Trained on 554m tokens, 1 epoch, lr .00987 brown corpus quotes (wikiquote, azquote, gracious quotes, english quotes) idioms (scraped) defitions (wordnet) wiki_text mini pile
Trained on runpod for 5 days using 3090
code: https://gist.github.com/thistleknot/368ab298edf596ef50d2cfdcbec66fd1
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Specify the path to the directory where the model is stored
#model_dir = r"C:\Users\User\Documents\wiki\wiki\data science\nlp\research\mamba_brown_trained_556m\mamba_brown_trained\mamba_brown_trained"
model_dir = "/home/user/mamba_brown_trained"
# Load the tokenizer from the local directory
# Load the tokenizer and model (use a causal language model for text generation)
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(model_dir)
model.to('cuda')
# Now, you can use the model and tokenizer for inference
input_text = "Once upon a time"
# Tokenize the input
inputs = tokenizer(input_text, return_tensors="pt").to('cuda')
# Generate output tokens using the model
output_ids = model.generate(**inputs, max_length=50)
# Decode the generated token IDs back into text
decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Print the generated output text
print(decoded_output)
Once upon a time, the world is changing.
# Now, you can use the model and tokenizer for inference
input_text = "The Fulton County Grand Fair was set for Friday at"
inputs = tokenizer(input_text, return_tensors="pt").to('cuda')
# Generate output tokens using the model with repetition controls
output_ids = model.generate(
    **inputs,
    max_length=256,  # Max tokens to generate
    repetition_penalty=1.2,  # Penalize repeated words
    no_repeat_ngram_size=3,  # Prevent 3-gram repetitions
    temperature=0.9,  # Adjust randomness (lower means more deterministic)
    top_k=50,  # Only sample from top 50 tokens
    top_p=0.9  # Use nucleus sampling to control diversity
)
# Decode the generated token IDs back into text
decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Print the generated output text
print(decoded_output)
- Downloads last month
 - 4
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	🙋
			
		Ask for provider support
Model tree for LaferriereJC/jamba_550M_trained
Base model
ai21labs/AI21-Jamba-Mini-1.5