SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("LamaDiab/MiniLM-SemanticEngine")
# Run inference
sentences = [
'hiit biker shorts - black',
'black shorts',
'winter slippers for ladies christmas themed',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.7103, -0.0705],
# [ 0.7103, 1.0000, -0.0356],
# [-0.0705, -0.0356, 1.0000]])
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9472 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 169,967 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 8.82 tokens
- max: 237 tokens
- min: 3 tokens
- mean: 14.99 tokens
- max: 256 tokens
- Samples:
anchor positive orasi barista almond milk is a premium, plant-based milk designed specifically for coffee lovers. crafted to create the perfect froth, it delivers a smooth and creamy texture that enhances the flavor of your lattes, cappuccinos, and other coffee drinks.groceriesthis toy is a "modern fashion" doll, combining beauty and innovation in its design. the doll has long and pink hair that adds a modern and attractive character to it. it comes with a wide variety of clothes and cool accessories that allow children to switch outfits and try different looks.
features:
modern and attractive design: the doll has a stylish and modern design that suits the tastes of children of different ages.
long and colorful hair: long and colorful hair gives the doll a distinctive and beautiful look, enhancing the possibilities of play and creativity.
wide range of clothes: the game has a large assortment of clothes that allow children to choose the appropriate outfits for the doll character according to their imagination.
multiple accessories: it comes with various accessories that add a touch of distinction and elegance to the doll, allowing to experiment with different styles.
stimulate creativity and imagination: the game helps enhance children's imagination by...kidszinnia ice box vivid gen.2 - blueblue ice box - Loss:
MultipleNegativesSymmetricRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": true }
Evaluation Dataset
Unnamed Dataset
- Size: 16,216 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 9.79 tokens
- max: 52 tokens
- min: 2 tokens
- mean: 19.21 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 9.76 tokens
- max: 67 tokens
- Samples:
anchor positive negative dosado ringdosado or dos- ร - dos: a wavy movement of two people around eachother, without turning & facing the same direction. material: 18k gold plated hammered brass. size: one size, adjustable. care instructions: to keep the jewelry pieces looking as good as new, please make sure that you store them in an airtight container. they should not come in contact with sweat, water or pefume, alcohol, sanitizers etc. polish with a microfiber cloth.kiprun ks light men's running shoes - blackpuzzle city of fogthis amazing puzzle offers a unique opportunity to explore the beauty of san francisco, also known as the "city by the bay," through assembling a 2000-piece jigsaw. you'll immerse yourself in a world full of colors and details, as your eyes wander across the iconic golden gate bridge, towering buildings, distinctive hilly streets, and sailing ships in the harbor. itโs a panoramic depiction of san francisco, providing a comprehensive view of the city and its landmarks.
features:
explore san francisco: enjoy a virtual exploration of san francisco without leaving your home. get up close with famous landmarks such as the golden gate bridge and the harbor.
improves cognitive skills: assembling the puzzle enhances focus, memory, and fine motor skills while boosting problem-solving and decision-making abilities.
relaxation and stress relief: puzzle assembly is a fun and engaging activity that helps to relax and reduce stress, especially when concentrating on the appealing details of san franc...unicornmy fault seriesmercedes ron booksophie's world - Loss:
MultipleNegativesSymmetricRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64weight_decay: 0.01num_train_epochs: 5warmup_ratio: 0.2fp16: Truedataloader_num_workers: 2dataloader_prefetch_factor: 2push_to_hub: Truehub_model_id: LamaDiab/MiniLM-SemanticEnginebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.2warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 2dataloader_prefetch_factor: 2past_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: LamaDiab/MiniLM-SemanticEnginehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
|---|---|---|---|---|
| 0.0004 | 1 | 1.6989 | - | - |
| 0.1883 | 500 | 1.6103 | 1.4441 | 0.9124 |
| 0.3765 | 1000 | 1.1942 | 1.3155 | 0.9233 |
| 0.5648 | 1500 | 0.9831 | 1.2584 | 0.9257 |
| 0.7530 | 2000 | 0.8867 | 1.2368 | 0.9254 |
| 0.9413 | 2500 | 0.8094 | 1.1874 | 0.9274 |
| 1.1295 | 3000 | 0.5818 | 1.1431 | 0.9348 |
| 1.3178 | 3500 | 0.6978 | 1.1291 | 0.9374 |
| 1.5060 | 4000 | 0.6652 | 1.0936 | 0.9389 |
| 1.6943 | 4500 | 0.6287 | 1.0889 | 0.9369 |
| 1.8825 | 5000 | 0.5986 | 1.0780 | 0.9404 |
| 2.0708 | 5500 | 0.4376 | 1.0783 | 0.9386 |
| 2.2590 | 6000 | 0.511 | 1.0674 | 0.9405 |
| 2.4473 | 6500 | 0.4997 | 1.0412 | 0.9427 |
| 2.6355 | 7000 | 0.4985 | 1.0160 | 0.9441 |
| 2.8238 | 7500 | 0.4798 | 1.0264 | 0.9434 |
| 3.0120 | 8000 | 0.3477 | 1.0153 | 0.9455 |
| 3.2003 | 8500 | 0.4117 | 1.0177 | 0.9461 |
| 3.3886 | 9000 | 0.4302 | 1.0071 | 0.9451 |
| 3.5768 | 9500 | 0.4046 | 1.0171 | 0.9460 |
| 3.7651 | 10000 | 0.414 | 0.9819 | 0.9474 |
| 3.9533 | 10500 | 0.3786 | 0.9982 | 0.9463 |
| 4.1416 | 11000 | 0.2952 | 0.9920 | 0.9461 |
| 4.3298 | 11500 | 0.3655 | 0.9959 | 0.9455 |
| 4.5181 | 12000 | 0.3655 | 0.9961 | 0.9464 |
| 4.7063 | 12500 | 0.3662 | 0.9826 | 0.9467 |
| 4.8946 | 13000 | 0.3545 | 0.9864 | 0.9472 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.2
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 35
Model tree for LamaDiab/MiniLM-SemanticEngine
Base model
sentence-transformers/all-MiniLM-L6-v2