Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LamaDiab/MiniLM-SemanticEngine")
# Run inference
sentences = [
'hiit biker shorts - black',
'black shorts',
'winter slippers for ladies christmas themed',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.7103, -0.0705],
# [ 0.7103, 1.0000, -0.0356],
# [-0.0705, -0.0356, 1.0000]])
TripletEvaluator| Metric | Value |
|---|---|
| cosine_accuracy | 0.9472 |
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
orasi barista almond milk is a premium, plant-based milk designed specifically for coffee lovers. crafted to create the perfect froth, it delivers a smooth and creamy texture that enhances the flavor of your lattes, cappuccinos, and other coffee drinks. |
groceries |
this toy is a "modern fashion" doll, combining beauty and innovation in its design. the doll has long and pink hair that adds a modern and attractive character to it. it comes with a wide variety of clothes and cool accessories that allow children to switch outfits and try different looks. |
|
features: |
|
modern and attractive design: the doll has a stylish and modern design that suits the tastes of children of different ages. |
|
long and colorful hair: long and colorful hair gives the doll a distinctive and beautiful look, enhancing the possibilities of play and creativity. |
|
wide range of clothes: the game has a large assortment of clothes that allow children to choose the appropriate outfits for the doll character according to their imagination. |
|
multiple accessories: it comes with various accessories that add a touch of distinction and elegance to the doll, allowing to experiment with different styles. |
|
stimulate creativity and imagination: the game helps enhance children's imagination by... |
kids |
zinnia ice box vivid gen.2 - blue |
blue ice box |
MultipleNegativesSymmetricRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": true
}
anchor, positive, and negative| anchor | positive | negative | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| anchor | positive | negative |
|---|---|---|
dosado ring |
dosado or dos- Ã - dos: a wavy movement of two people around eachother, without turning & facing the same direction. material: 18k gold plated hammered brass. size: one size, adjustable. care instructions: to keep the jewelry pieces looking as good as new, please make sure that you store them in an airtight container. they should not come in contact with sweat, water or pefume, alcohol, sanitizers etc. polish with a microfiber cloth. |
kiprun ks light men's running shoes - black |
puzzle city of fog |
this amazing puzzle offers a unique opportunity to explore the beauty of san francisco, also known as the "city by the bay," through assembling a 2000-piece jigsaw. you'll immerse yourself in a world full of colors and details, as your eyes wander across the iconic golden gate bridge, towering buildings, distinctive hilly streets, and sailing ships in the harbor. it’s a panoramic depiction of san francisco, providing a comprehensive view of the city and its landmarks. |
unicorn |
my fault series |
mercedes ron book |
sophie's world |
MultipleNegativesSymmetricRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": true
}
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64weight_decay: 0.01num_train_epochs: 5warmup_ratio: 0.2fp16: Truedataloader_num_workers: 2dataloader_prefetch_factor: 2push_to_hub: Truehub_model_id: LamaDiab/MiniLM-SemanticEnginebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.2warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 2dataloader_prefetch_factor: 2past_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: LamaDiab/MiniLM-SemanticEnginehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
|---|---|---|---|---|
| 0.0004 | 1 | 1.6989 | - | - |
| 0.1883 | 500 | 1.6103 | 1.4441 | 0.9124 |
| 0.3765 | 1000 | 1.1942 | 1.3155 | 0.9233 |
| 0.5648 | 1500 | 0.9831 | 1.2584 | 0.9257 |
| 0.7530 | 2000 | 0.8867 | 1.2368 | 0.9254 |
| 0.9413 | 2500 | 0.8094 | 1.1874 | 0.9274 |
| 1.1295 | 3000 | 0.5818 | 1.1431 | 0.9348 |
| 1.3178 | 3500 | 0.6978 | 1.1291 | 0.9374 |
| 1.5060 | 4000 | 0.6652 | 1.0936 | 0.9389 |
| 1.6943 | 4500 | 0.6287 | 1.0889 | 0.9369 |
| 1.8825 | 5000 | 0.5986 | 1.0780 | 0.9404 |
| 2.0708 | 5500 | 0.4376 | 1.0783 | 0.9386 |
| 2.2590 | 6000 | 0.511 | 1.0674 | 0.9405 |
| 2.4473 | 6500 | 0.4997 | 1.0412 | 0.9427 |
| 2.6355 | 7000 | 0.4985 | 1.0160 | 0.9441 |
| 2.8238 | 7500 | 0.4798 | 1.0264 | 0.9434 |
| 3.0120 | 8000 | 0.3477 | 1.0153 | 0.9455 |
| 3.2003 | 8500 | 0.4117 | 1.0177 | 0.9461 |
| 3.3886 | 9000 | 0.4302 | 1.0071 | 0.9451 |
| 3.5768 | 9500 | 0.4046 | 1.0171 | 0.9460 |
| 3.7651 | 10000 | 0.414 | 0.9819 | 0.9474 |
| 3.9533 | 10500 | 0.3786 | 0.9982 | 0.9463 |
| 4.1416 | 11000 | 0.2952 | 0.9920 | 0.9461 |
| 4.3298 | 11500 | 0.3655 | 0.9959 | 0.9455 |
| 4.5181 | 12000 | 0.3655 | 0.9961 | 0.9464 |
| 4.7063 | 12500 | 0.3662 | 0.9826 | 0.9467 |
| 4.8946 | 13000 | 0.3545 | 0.9864 | 0.9472 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
sentence-transformers/all-MiniLM-L6-v2