LamaDiab's picture
Updating model weights
72085b0 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:1339067
- loss:MultipleNegativesSymmetricRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: kids' slippers with a sporty neon green design (size 24-25)
sentences:
- slipper
- colorful slipper
- black winter hoodie
- source_sentence: male teacher figurine
sentences:
- home decor accessory
- ' figurine'
- natural hair flat oil brush 579 size 5
- source_sentence: diana emerald
sentences:
- lantana crochet handbag
- emerald earrings
- earring
- source_sentence: brown smoked salmon wrap + small orange juice
sentences:
- deli
- ' orange juice'
- boncafe puro arabica nespresso compatible
- source_sentence: black seed oil
sentences:
- essentials lip gloss temptation - rusty brown
- essential oils
- natural black seed oil
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9774984121322632
name: Cosine Accuracy
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LamaDiab/MiniLM-v2-v36-overlapbatch-SemanticEngine")
# Run inference
sentences = [
'black seed oil',
'natural black seed oil',
'essentials lip gloss temptation - rusty brown',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9524, 0.1949],
# [0.9524, 1.0000, 0.1884],
# [0.1949, 0.1884, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9775** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,339,067 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>itemCategory</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | itemCategory |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 10.44 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.12 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.03 tokens</li><li>max: 9 tokens</li></ul> |
* Samples:
| anchor | positive | itemCategory |
|:----------------------------------------------------|:--------------------------------------------------|:----------------------|
| <code>adults tie-dye pant</code> | <code>pants</code> | <code>trousers</code> |
| <code>manicure remover vanilla</code> | <code>fruit fragrances nail polish remover</code> | <code>nailcare</code> |
| <code>canvas frame painting acrylic colors 5</code> | <code>canvas</code> | <code>painting</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 9,466 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, and <code>itemCategory</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | itemCategory |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 9.65 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 5.83 tokens</li><li>max: 131 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.09 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.82 tokens</li><li>max: 9 tokens</li></ul> |
* Samples:
| anchor | positive | negative | itemCategory |
|:-------------------------------------------------------|:-----------------------------|:---------------------------------------------|:----------------------|
| <code>extra bubblemint sugar free chewing gum</code> | <code> extra gum</code> | <code>céleste belgian chocolate sablé</code> | <code>sweet</code> |
| <code>golden pothos</code> | <code>evergreen plant</code> | <code>spider-man action figure</code> | <code>plant</code> |
| <code>effortless style slit linen pants - beige</code> | <code>soft pants</code> | <code>the one lilac</code> | <code>trousers</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 3e-05
- `weight_decay`: 0.01
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 2
- `dataloader_persistent_workers`: True
- `push_to_hub`: True
- `hub_model_id`: LamaDiab/MiniLM-v2-v36-overlapbatch-SemanticEngine
- `hub_strategy`: all_checkpoints
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 2
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: True
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: LamaDiab/MiniLM-v2-v36-overlapbatch-SemanticEngine
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
|:------:|:-----:|:-------------:|:---------------:|:---------------:|
| 0.0002 | 1 | 2.4739 | - | - |
| 0.1912 | 1000 | 1.904 | 1.0658 | 0.9567 |
| 0.3823 | 2000 | 1.4035 | 0.9598 | 0.9651 |
| 0.5735 | 3000 | 1.1812 | 0.9080 | 0.9709 |
| 0.7647 | 4000 | 1.1325 | 0.8635 | 0.9729 |
| 0.9558 | 5000 | 1.6713 | 0.8611 | 0.9725 |
| 1.1470 | 6000 | 1.5416 | 0.8358 | 0.9737 |
| 1.3380 | 7000 | 1.1634 | 0.8124 | 0.9753 |
| 1.5291 | 8000 | 1.1446 | 0.8198 | 0.9762 |
| 1.7202 | 9000 | 1.1326 | 0.8060 | 0.9760 |
| 1.9113 | 10000 | 1.1111 | 0.8110 | 0.9765 |
| 2.1024 | 11000 | 1.062 | 0.8092 | 0.9778 |
| 2.2935 | 12000 | 1.0553 | 0.8073 | 0.9771 |
| 2.4846 | 13000 | 1.0477 | 0.8019 | 0.9777 |
| 2.6757 | 14000 | 1.0424 | 0.8012 | 0.9778 |
| 2.8668 | 15000 | 1.0563 | 0.8009 | 0.9775 |
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.2
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->