SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("LamaDiab/MiniLM-v35-SemanticEngine")
# Run inference
sentences = [
    'eva a.bacterial h.sanitizer han.gel350m#',
    ' hand gel',
    'blue balloon collection',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.4571, -0.0845],
#         [ 0.4571,  1.0000,  0.0257],
#         [-0.0845,  0.0257,  1.0000]])

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9749

Training Details

Training Dataset

Unnamed Dataset

  • Size: 790,756 training samples
  • Columns: anchor, positive, and itemCategory
  • Approximate statistics based on the first 1000 samples:
    anchor positive itemCategory
    type string string string
    details
    • min: 3 tokens
    • mean: 8.91 tokens
    • max: 92 tokens
    • min: 3 tokens
    • mean: 5.92 tokens
    • max: 23 tokens
    • min: 3 tokens
    • mean: 3.95 tokens
    • max: 9 tokens
  • Samples:
    anchor positive itemCategory
    m&g acrylic marker, apl976d966, viridescent, s500 m&g acrylic marker, apl976d966, green, s500 marker
    daky raspberry 48h deo r.on 2x50m@# deodorant women's deodorant
    melatex sun yellow spf(50+)50m melatex cream spf(50+)50m skin whitening
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 9,466 evaluation samples
  • Columns: anchor, positive, negative, and itemCategory
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative itemCategory
    type string string string string
    details
    • min: 3 tokens
    • mean: 9.65 tokens
    • max: 32 tokens
    • min: 2 tokens
    • mean: 6.0 tokens
    • max: 131 tokens
    • min: 3 tokens
    • mean: 9.08 tokens
    • max: 33 tokens
    • min: 3 tokens
    • mean: 3.82 tokens
    • max: 9 tokens
  • Samples:
    anchor positive negative itemCategory
    extra bubblemint sugar free chewing gum gum zumra coconut milk 17-19% fats sweet
    golden pothos evergreen plant stainless steel insulated hiking bottle 1 l blue plant
    effortless style slit linen pants - beige women pants cool grey camouflage training short sleeve top trousers
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True
  • dataloader_num_workers: 1
  • dataloader_prefetch_factor: 2
  • dataloader_persistent_workers: True
  • push_to_hub: True
  • hub_model_id: LamaDiab/MiniLM-v35-SemanticEngine
  • hub_strategy: all_checkpoints

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 1
  • dataloader_prefetch_factor: 2
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: True
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: LamaDiab/MiniLM-v35-SemanticEngine
  • hub_strategy: all_checkpoints
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy
0.0003 1 2.5131 - -
0.3237 1000 1.8415 1.0824 0.9512
0.6475 2000 1.3696 0.9929 0.9617
0.9712 3000 1.4502 0.9487 0.9656
1.2947 4000 1.3141 0.8925 0.9704
1.6182 5000 1.1692 0.8781 0.9709
1.9418 6000 1.1209 0.8579 0.9718
2.2653 7000 1.0609 0.8649 0.9738
2.5888 8000 1.0507 0.8569 0.9725
2.9123 9000 1.0079 0.8493 0.9736
3.2358 10000 1.0006 0.8392 0.9735
3.5594 11000 0.9947 0.8390 0.9751
3.8829 12000 0.9774 0.8403 0.9749

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.1.2
  • Transformers: 4.53.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.4.1
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
48
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for LamaDiab/MiniLM-v35-SemanticEngine

Finetuned
(673)
this model
Quantizations
1 model

Evaluation results