LamaDiab commited on
Commit
2a08e77
·
verified ·
1 Parent(s): 32e5fc4

Training in progress, epoch 2, checkpoint

Browse files
checkpoint-6180/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-6180/README.md ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:790756
9
+ - loss:MultipleNegativesSymmetricRankingLoss
10
+ base_model: sentence-transformers/all-MiniLM-L6-v2
11
+ widget:
12
+ - source_sentence: creamy black varnish for black leathers
13
+ sentences:
14
+ - shoe accessory
15
+ - the first product scented, nourishing, polishing and preserving all types of leather
16
+ 50 gr.
17
+ - steal the scene t-shirt
18
+ - source_sentence: beige lounge set
19
+ sentences:
20
+ - pajamas
21
+ - women pajama set
22
+ - not so basic sports bra
23
+ - source_sentence: not not donner
24
+ sentences:
25
+ - sesame bites
26
+ - stuffed dough
27
+ - deli
28
+ - source_sentence: seaboat-5 240/2 sea fishing combo
29
+ sentences:
30
+ - fishing
31
+ - vertical fishing rod
32
+ - small pool ball - red
33
+ - source_sentence: eva a.bacterial h.sanitizer han.gel350m#
34
+ sentences:
35
+ - blue balloon collection
36
+ - sanitizer
37
+ - ' hand gel'
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - cosine_accuracy
42
+ model-index:
43
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
44
+ results:
45
+ - task:
46
+ type: triplet
47
+ name: Triplet
48
+ dataset:
49
+ name: Unknown
50
+ type: unknown
51
+ metrics:
52
+ - type: cosine_accuracy
53
+ value: 0.9717937707901001
54
+ name: Cosine Accuracy
55
+ ---
56
+
57
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
58
+
59
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
60
+
61
+ ## Model Details
62
+
63
+ ### Model Description
64
+ - **Model Type:** Sentence Transformer
65
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
66
+ - **Maximum Sequence Length:** 256 tokens
67
+ - **Output Dimensionality:** 384 dimensions
68
+ - **Similarity Function:** Cosine Similarity
69
+ <!-- - **Training Dataset:** Unknown -->
70
+ <!-- - **Language:** Unknown -->
71
+ <!-- - **License:** Unknown -->
72
+
73
+ ### Model Sources
74
+
75
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
76
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
77
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
78
+
79
+ ### Full Model Architecture
80
+
81
+ ```
82
+ SentenceTransformer(
83
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
84
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
85
+ (2): Normalize()
86
+ )
87
+ ```
88
+
89
+ ## Usage
90
+
91
+ ### Direct Usage (Sentence Transformers)
92
+
93
+ First install the Sentence Transformers library:
94
+
95
+ ```bash
96
+ pip install -U sentence-transformers
97
+ ```
98
+
99
+ Then you can load this model and run inference.
100
+ ```python
101
+ from sentence_transformers import SentenceTransformer
102
+
103
+ # Download from the 🤗 Hub
104
+ model = SentenceTransformer("LamaDiab/MiniLM-v35-SemanticEngine")
105
+ # Run inference
106
+ sentences = [
107
+ 'eva a.bacterial h.sanitizer han.gel350m#',
108
+ ' hand gel',
109
+ 'blue balloon collection',
110
+ ]
111
+ embeddings = model.encode(sentences)
112
+ print(embeddings.shape)
113
+ # [3, 384]
114
+
115
+ # Get the similarity scores for the embeddings
116
+ similarities = model.similarity(embeddings, embeddings)
117
+ print(similarities)
118
+ # tensor([[ 1.0000, 0.4310, -0.1157],
119
+ # [ 0.4310, 1.0000, 0.0428],
120
+ # [-0.1157, 0.0428, 1.0000]])
121
+ ```
122
+
123
+ <!--
124
+ ### Direct Usage (Transformers)
125
+
126
+ <details><summary>Click to see the direct usage in Transformers</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Downstream Usage (Sentence Transformers)
133
+
134
+ You can finetune this model on your own dataset.
135
+
136
+ <details><summary>Click to expand</summary>
137
+
138
+ </details>
139
+ -->
140
+
141
+ <!--
142
+ ### Out-of-Scope Use
143
+
144
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
145
+ -->
146
+
147
+ ## Evaluation
148
+
149
+ ### Metrics
150
+
151
+ #### Triplet
152
+
153
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
154
+
155
+ | Metric | Value |
156
+ |:--------------------|:-----------|
157
+ | **cosine_accuracy** | **0.9718** |
158
+
159
+ <!--
160
+ ## Bias, Risks and Limitations
161
+
162
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
163
+ -->
164
+
165
+ <!--
166
+ ### Recommendations
167
+
168
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
169
+ -->
170
+
171
+ ## Training Details
172
+
173
+ ### Training Dataset
174
+
175
+ #### Unnamed Dataset
176
+
177
+ * Size: 790,756 training samples
178
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>itemCategory</code>
179
+ * Approximate statistics based on the first 1000 samples:
180
+ | | anchor | positive | itemCategory |
181
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
182
+ | type | string | string | string |
183
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.91 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.92 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.95 tokens</li><li>max: 9 tokens</li></ul> |
184
+ * Samples:
185
+ | anchor | positive | itemCategory |
186
+ |:---------------------------------------------------------------|:---------------------------------------------------------|:-------------------------------|
187
+ | <code>m&g acrylic marker, apl976d966, viridescent, s500</code> | <code>m&g acrylic marker, apl976d966, green, s500</code> | <code>marker</code> |
188
+ | <code>daky raspberry 48h deo r.on 2x50m@#</code> | <code>deodorant</code> | <code>women's deodorant</code> |
189
+ | <code>melatex sun yellow spf(50+)50m</code> | <code>melatex cream spf(50+)50m</code> | <code>skin whitening</code> |
190
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
191
+ ```json
192
+ {
193
+ "scale": 20.0,
194
+ "similarity_fct": "cos_sim",
195
+ "gather_across_devices": false
196
+ }
197
+ ```
198
+
199
+ ### Evaluation Dataset
200
+
201
+ #### Unnamed Dataset
202
+
203
+ * Size: 9,466 evaluation samples
204
+ * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, and <code>itemCategory</code>
205
+ * Approximate statistics based on the first 1000 samples:
206
+ | | anchor | positive | negative | itemCategory |
207
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
208
+ | type | string | string | string | string |
209
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.65 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 6.0 tokens</li><li>max: 131 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.08 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.82 tokens</li><li>max: 9 tokens</li></ul> |
210
+ * Samples:
211
+ | anchor | positive | negative | itemCategory |
212
+ |:-------------------------------------------------------|:-----------------------------|:--------------------------------------------------------------|:----------------------|
213
+ | <code>extra bubblemint sugar free chewing gum</code> | <code> gum</code> | <code>zumra coconut milk 17-19% fats</code> | <code>sweet</code> |
214
+ | <code>golden pothos</code> | <code>evergreen plant</code> | <code>stainless steel insulated hiking bottle 1 l blue</code> | <code>plant</code> |
215
+ | <code>effortless style slit linen pants - beige</code> | <code>women pants</code> | <code>cool grey camouflage training short sleeve top</code> | <code>trousers</code> |
216
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
217
+ ```json
218
+ {
219
+ "scale": 20.0,
220
+ "similarity_fct": "cos_sim",
221
+ "gather_across_devices": false
222
+ }
223
+ ```
224
+
225
+ ### Training Hyperparameters
226
+ #### Non-Default Hyperparameters
227
+
228
+ - `eval_strategy`: steps
229
+ - `per_device_train_batch_size`: 256
230
+ - `per_device_eval_batch_size`: 256
231
+ - `learning_rate`: 3e-05
232
+ - `weight_decay`: 0.01
233
+ - `num_train_epochs`: 4
234
+ - `warmup_ratio`: 0.1
235
+ - `fp16`: True
236
+ - `dataloader_num_workers`: 1
237
+ - `dataloader_prefetch_factor`: 2
238
+ - `dataloader_persistent_workers`: True
239
+ - `push_to_hub`: True
240
+ - `hub_model_id`: LamaDiab/MiniLM-v35-SemanticEngine
241
+ - `hub_strategy`: all_checkpoints
242
+
243
+ #### All Hyperparameters
244
+ <details><summary>Click to expand</summary>
245
+
246
+ - `overwrite_output_dir`: False
247
+ - `do_predict`: False
248
+ - `eval_strategy`: steps
249
+ - `prediction_loss_only`: True
250
+ - `per_device_train_batch_size`: 256
251
+ - `per_device_eval_batch_size`: 256
252
+ - `per_gpu_train_batch_size`: None
253
+ - `per_gpu_eval_batch_size`: None
254
+ - `gradient_accumulation_steps`: 1
255
+ - `eval_accumulation_steps`: None
256
+ - `torch_empty_cache_steps`: None
257
+ - `learning_rate`: 3e-05
258
+ - `weight_decay`: 0.01
259
+ - `adam_beta1`: 0.9
260
+ - `adam_beta2`: 0.999
261
+ - `adam_epsilon`: 1e-08
262
+ - `max_grad_norm`: 1.0
263
+ - `num_train_epochs`: 4
264
+ - `max_steps`: -1
265
+ - `lr_scheduler_type`: linear
266
+ - `lr_scheduler_kwargs`: {}
267
+ - `warmup_ratio`: 0.1
268
+ - `warmup_steps`: 0
269
+ - `log_level`: passive
270
+ - `log_level_replica`: warning
271
+ - `log_on_each_node`: True
272
+ - `logging_nan_inf_filter`: True
273
+ - `save_safetensors`: True
274
+ - `save_on_each_node`: False
275
+ - `save_only_model`: False
276
+ - `restore_callback_states_from_checkpoint`: False
277
+ - `no_cuda`: False
278
+ - `use_cpu`: False
279
+ - `use_mps_device`: False
280
+ - `seed`: 42
281
+ - `data_seed`: None
282
+ - `jit_mode_eval`: False
283
+ - `use_ipex`: False
284
+ - `bf16`: False
285
+ - `fp16`: True
286
+ - `fp16_opt_level`: O1
287
+ - `half_precision_backend`: auto
288
+ - `bf16_full_eval`: False
289
+ - `fp16_full_eval`: False
290
+ - `tf32`: None
291
+ - `local_rank`: 0
292
+ - `ddp_backend`: None
293
+ - `tpu_num_cores`: None
294
+ - `tpu_metrics_debug`: False
295
+ - `debug`: []
296
+ - `dataloader_drop_last`: False
297
+ - `dataloader_num_workers`: 1
298
+ - `dataloader_prefetch_factor`: 2
299
+ - `past_index`: -1
300
+ - `disable_tqdm`: False
301
+ - `remove_unused_columns`: True
302
+ - `label_names`: None
303
+ - `load_best_model_at_end`: False
304
+ - `ignore_data_skip`: False
305
+ - `fsdp`: []
306
+ - `fsdp_min_num_params`: 0
307
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
308
+ - `fsdp_transformer_layer_cls_to_wrap`: None
309
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
310
+ - `deepspeed`: None
311
+ - `label_smoothing_factor`: 0.0
312
+ - `optim`: adamw_torch
313
+ - `optim_args`: None
314
+ - `adafactor`: False
315
+ - `group_by_length`: False
316
+ - `length_column_name`: length
317
+ - `ddp_find_unused_parameters`: None
318
+ - `ddp_bucket_cap_mb`: None
319
+ - `ddp_broadcast_buffers`: False
320
+ - `dataloader_pin_memory`: True
321
+ - `dataloader_persistent_workers`: True
322
+ - `skip_memory_metrics`: True
323
+ - `use_legacy_prediction_loop`: False
324
+ - `push_to_hub`: True
325
+ - `resume_from_checkpoint`: None
326
+ - `hub_model_id`: LamaDiab/MiniLM-v35-SemanticEngine
327
+ - `hub_strategy`: all_checkpoints
328
+ - `hub_private_repo`: None
329
+ - `hub_always_push`: False
330
+ - `hub_revision`: None
331
+ - `gradient_checkpointing`: False
332
+ - `gradient_checkpointing_kwargs`: None
333
+ - `include_inputs_for_metrics`: False
334
+ - `include_for_metrics`: []
335
+ - `eval_do_concat_batches`: True
336
+ - `fp16_backend`: auto
337
+ - `push_to_hub_model_id`: None
338
+ - `push_to_hub_organization`: None
339
+ - `mp_parameters`:
340
+ - `auto_find_batch_size`: False
341
+ - `full_determinism`: False
342
+ - `torchdynamo`: None
343
+ - `ray_scope`: last
344
+ - `ddp_timeout`: 1800
345
+ - `torch_compile`: False
346
+ - `torch_compile_backend`: None
347
+ - `torch_compile_mode`: None
348
+ - `include_tokens_per_second`: False
349
+ - `include_num_input_tokens_seen`: False
350
+ - `neftune_noise_alpha`: None
351
+ - `optim_target_modules`: None
352
+ - `batch_eval_metrics`: False
353
+ - `eval_on_start`: False
354
+ - `use_liger_kernel`: False
355
+ - `liger_kernel_config`: None
356
+ - `eval_use_gather_object`: False
357
+ - `average_tokens_across_devices`: False
358
+ - `prompts`: None
359
+ - `batch_sampler`: batch_sampler
360
+ - `multi_dataset_batch_sampler`: proportional
361
+ - `router_mapping`: {}
362
+ - `learning_rate_mapping`: {}
363
+
364
+ </details>
365
+
366
+ ### Training Logs
367
+ | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
368
+ |:------:|:----:|:-------------:|:---------------:|:---------------:|
369
+ | 0.0003 | 1 | 2.5131 | - | - |
370
+ | 0.3237 | 1000 | 1.8415 | 1.0824 | 0.9512 |
371
+ | 0.6475 | 2000 | 1.3696 | 0.9929 | 0.9617 |
372
+ | 0.9712 | 3000 | 1.4502 | 0.9487 | 0.9656 |
373
+ | 1.2947 | 4000 | 1.3141 | 0.8925 | 0.9704 |
374
+ | 1.6182 | 5000 | 1.1692 | 0.8781 | 0.9709 |
375
+ | 1.9418 | 6000 | 1.1209 | 0.8579 | 0.9718 |
376
+
377
+
378
+ ### Framework Versions
379
+ - Python: 3.11.13
380
+ - Sentence Transformers: 5.1.2
381
+ - Transformers: 4.53.3
382
+ - PyTorch: 2.6.0+cu124
383
+ - Accelerate: 1.9.0
384
+ - Datasets: 4.4.1
385
+ - Tokenizers: 0.21.2
386
+
387
+ ## Citation
388
+
389
+ ### BibTeX
390
+
391
+ #### Sentence Transformers
392
+ ```bibtex
393
+ @inproceedings{reimers-2019-sentence-bert,
394
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
395
+ author = "Reimers, Nils and Gurevych, Iryna",
396
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
397
+ month = "11",
398
+ year = "2019",
399
+ publisher = "Association for Computational Linguistics",
400
+ url = "https://arxiv.org/abs/1908.10084",
401
+ }
402
+ ```
403
+
404
+ <!--
405
+ ## Glossary
406
+
407
+ *Clearly define terms in order to be accessible across audiences.*
408
+ -->
409
+
410
+ <!--
411
+ ## Model Card Authors
412
+
413
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
414
+ -->
415
+
416
+ <!--
417
+ ## Model Card Contact
418
+
419
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
420
+ -->
checkpoint-6180/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
checkpoint-6180/config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.2",
4
+ "transformers": "4.53.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
checkpoint-6180/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8bde5f8f10df092a9938599cc24bb6d11afe7db4c22e1448aff848286e656af
3
+ size 90864192
checkpoint-6180/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-6180/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4252d2d2f49fa177ba58d3437f1577f5f6f3efa66ce4fb88a0007b758a0af5c0
3
+ size 180607738
checkpoint-6180/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdf2fa8fd49d54aa444e33bfb26a9d8825da4171e03ac7f9a7ce7fa3e4d89323
3
+ size 14244
checkpoint-6180/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:885093d4937e95060918330908f54f5761582e3c8b896bc8ce8d304c6971e4c0
3
+ size 988
checkpoint-6180/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c72827c583278e12acef540e02be1e28f85390a680544a3a6e624e3c6a26fdb9
3
+ size 1064
checkpoint-6180/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-6180/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-6180/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-6180/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
checkpoint-6180/trainer_state.json ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 1000,
7
+ "global_step": 6180,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0003237293622531564,
14
+ "grad_norm": 5.294984340667725,
15
+ "learning_rate": 0.0,
16
+ "loss": 2.5131,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.32372936225315635,
21
+ "grad_norm": 3.888833522796631,
22
+ "learning_rate": 2.424757281553398e-05,
23
+ "loss": 1.8415,
24
+ "step": 1000
25
+ },
26
+ {
27
+ "epoch": 0.32372936225315635,
28
+ "eval_cosine_accuracy": 0.9511937499046326,
29
+ "eval_loss": 1.082350730895996,
30
+ "eval_runtime": 25.045,
31
+ "eval_samples_per_second": 377.959,
32
+ "eval_steps_per_second": 1.477,
33
+ "step": 1000
34
+ },
35
+ {
36
+ "epoch": 0.6474587245063127,
37
+ "grad_norm": 3.7192389965057373,
38
+ "learning_rate": 2.7941546762589928e-05,
39
+ "loss": 1.3696,
40
+ "step": 2000
41
+ },
42
+ {
43
+ "epoch": 0.6474587245063127,
44
+ "eval_cosine_accuracy": 0.9616522192955017,
45
+ "eval_loss": 0.9928585290908813,
46
+ "eval_runtime": 24.1997,
47
+ "eval_samples_per_second": 391.162,
48
+ "eval_steps_per_second": 1.529,
49
+ "step": 2000
50
+ },
51
+ {
52
+ "epoch": 0.9711880867594691,
53
+ "grad_norm": 3.8493621349334717,
54
+ "learning_rate": 2.5243705035971223e-05,
55
+ "loss": 1.4502,
56
+ "step": 3000
57
+ },
58
+ {
59
+ "epoch": 0.9711880867594691,
60
+ "eval_cosine_accuracy": 0.9655609726905823,
61
+ "eval_loss": 0.94865882396698,
62
+ "eval_runtime": 24.3555,
63
+ "eval_samples_per_second": 388.66,
64
+ "eval_steps_per_second": 1.519,
65
+ "step": 3000
66
+ },
67
+ {
68
+ "epoch": 1.2947266256874799,
69
+ "grad_norm": 3.0650620460510254,
70
+ "learning_rate": 2.254586330935252e-05,
71
+ "loss": 1.3141,
72
+ "step": 4000
73
+ },
74
+ {
75
+ "epoch": 1.2947266256874799,
76
+ "eval_cosine_accuracy": 0.9704204797744751,
77
+ "eval_loss": 0.8925007581710815,
78
+ "eval_runtime": 24.3977,
79
+ "eval_samples_per_second": 387.987,
80
+ "eval_steps_per_second": 1.517,
81
+ "step": 4000
82
+ },
83
+ {
84
+ "epoch": 1.6182465221611129,
85
+ "grad_norm": 2.806612968444824,
86
+ "learning_rate": 1.985071942446043e-05,
87
+ "loss": 1.1692,
88
+ "step": 5000
89
+ },
90
+ {
91
+ "epoch": 1.6182465221611129,
92
+ "eval_cosine_accuracy": 0.9709486365318298,
93
+ "eval_loss": 0.8780702352523804,
94
+ "eval_runtime": 24.3201,
95
+ "eval_samples_per_second": 389.226,
96
+ "eval_steps_per_second": 1.521,
97
+ "step": 5000
98
+ },
99
+ {
100
+ "epoch": 1.941766418634746,
101
+ "grad_norm": 3.0037014484405518,
102
+ "learning_rate": 1.7152877697841724e-05,
103
+ "loss": 1.1209,
104
+ "step": 6000
105
+ },
106
+ {
107
+ "epoch": 1.941766418634746,
108
+ "eval_cosine_accuracy": 0.9717937707901001,
109
+ "eval_loss": 0.8578657507896423,
110
+ "eval_runtime": 24.5063,
111
+ "eval_samples_per_second": 386.268,
112
+ "eval_steps_per_second": 1.51,
113
+ "step": 6000
114
+ }
115
+ ],
116
+ "logging_steps": 1000,
117
+ "max_steps": 12356,
118
+ "num_input_tokens_seen": 0,
119
+ "num_train_epochs": 4,
120
+ "save_steps": 500,
121
+ "stateful_callbacks": {
122
+ "TrainerControl": {
123
+ "args": {
124
+ "should_epoch_stop": false,
125
+ "should_evaluate": false,
126
+ "should_log": false,
127
+ "should_save": true,
128
+ "should_training_stop": false
129
+ },
130
+ "attributes": {}
131
+ }
132
+ },
133
+ "total_flos": 0.0,
134
+ "train_batch_size": 256,
135
+ "trial_name": null,
136
+ "trial_params": null
137
+ }
checkpoint-6180/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1d310db677b6927bcb864375e8fac686948d401375d47367af70277efab664a
3
+ size 5752
checkpoint-6180/vocab.txt ADDED
The diff for this file is too large to render. See raw diff