Update for new transformers release
#6
by
ankke
- opened
- README.md +3 -4
- config.json +2 -7
- modeling_lfm2_vl.py +0 -688
- processing_lfm2_vl.py +0 -645
README.md
CHANGED
@@ -89,7 +89,7 @@ You can apply it using the dedicated [`.apply_chat_template()`](https://huggingf
|
|
89 |
|
90 |
## 🏃 How to run LFM2-VL
|
91 |
|
92 |
-
You can run LFM2-VL with Hugging Face [`transformers`](https://github.com/huggingface/transformers) v4.
|
93 |
|
94 |
```bash
|
95 |
pip install -U transformers pillow
|
@@ -106,10 +106,9 @@ model_id = "LiquidAI/LFM2-VL-1.6B"
|
|
106 |
model = AutoModelForImageTextToText.from_pretrained(
|
107 |
model_id,
|
108 |
device_map="auto",
|
109 |
-
|
110 |
-
trust_remote_code=True
|
111 |
)
|
112 |
-
processor = AutoProcessor.from_pretrained(model_id
|
113 |
|
114 |
# Load image and create conversation
|
115 |
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
|
89 |
|
90 |
## 🏃 How to run LFM2-VL
|
91 |
|
92 |
+
You can run LFM2-VL with Hugging Face [`transformers`](https://github.com/huggingface/transformers) v4.57 or more recent as follows:
|
93 |
|
94 |
```bash
|
95 |
pip install -U transformers pillow
|
|
|
106 |
model = AutoModelForImageTextToText.from_pretrained(
|
107 |
model_id,
|
108 |
device_map="auto",
|
109 |
+
dtype="bfloat16"
|
|
|
110 |
)
|
111 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
112 |
|
113 |
# Load image and create conversation
|
114 |
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
config.json
CHANGED
@@ -2,10 +2,6 @@
|
|
2 |
"architectures": [
|
3 |
"Lfm2VlForConditionalGeneration"
|
4 |
],
|
5 |
-
"auto_map": {
|
6 |
-
"AutoConfig": "modeling_lfm2_vl.Lfm2VlConfig",
|
7 |
-
"AutoModelForImageTextToText": "modeling_lfm2_vl.Lfm2VlForConditionalGeneration"
|
8 |
-
},
|
9 |
"do_image_splitting": true,
|
10 |
"downsample_factor": 2,
|
11 |
"encoder_patch_size": 16,
|
@@ -16,7 +12,7 @@
|
|
16 |
"max_tiles": 10,
|
17 |
"min_image_tokens": 64,
|
18 |
"min_tiles": 2,
|
19 |
-
"model_type": "
|
20 |
"projector_bias": true,
|
21 |
"projector_hidden_act": "gelu",
|
22 |
"projector_hidden_size": 2560,
|
@@ -94,6 +90,5 @@
|
|
94 |
"patch_size": 16,
|
95 |
"torch_dtype": "bfloat16",
|
96 |
"vision_use_head": false
|
97 |
-
}
|
98 |
-
"vision_feature_layer": -2
|
99 |
}
|
|
|
2 |
"architectures": [
|
3 |
"Lfm2VlForConditionalGeneration"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"do_image_splitting": true,
|
6 |
"downsample_factor": 2,
|
7 |
"encoder_patch_size": 16,
|
|
|
12 |
"max_tiles": 10,
|
13 |
"min_image_tokens": 64,
|
14 |
"min_tiles": 2,
|
15 |
+
"model_type": "lfm2_vl",
|
16 |
"projector_bias": true,
|
17 |
"projector_hidden_act": "gelu",
|
18 |
"projector_hidden_size": 2560,
|
|
|
90 |
"patch_size": 16,
|
91 |
"torch_dtype": "bfloat16",
|
92 |
"vision_use_head": false
|
93 |
+
}
|
|
|
94 |
}
|
modeling_lfm2_vl.py
DELETED
@@ -1,688 +0,0 @@
|
|
1 |
-
"""PyTorch LFM2-VL model."""
|
2 |
-
|
3 |
-
from dataclasses import dataclass
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from torch import nn
|
7 |
-
from transformers import AutoConfig, AutoModel
|
8 |
-
from transformers.activations import ACT2FN
|
9 |
-
from transformers.cache_utils import Cache
|
10 |
-
from transformers.configuration_utils import PretrainedConfig
|
11 |
-
from transformers.generation import GenerationMixin
|
12 |
-
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
13 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
14 |
-
from transformers.modeling_utils import PreTrainedModel
|
15 |
-
from transformers.models.lfm2.configuration_lfm2 import Lfm2Config
|
16 |
-
from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig
|
17 |
-
from transformers.models.siglip2.modeling_siglip2 import Siglip2VisionModel
|
18 |
-
from transformers.processing_utils import Unpack
|
19 |
-
from transformers.utils import can_return_tuple, logging
|
20 |
-
|
21 |
-
logger = logging.get_logger(__name__)
|
22 |
-
|
23 |
-
|
24 |
-
class Lfm2VlConfig(PretrainedConfig):
|
25 |
-
r"""
|
26 |
-
This is the configuration class to store the configuration of a [`Lfm2VlForConditionalGeneration`]. It is used to instantiate an
|
27 |
-
Lfm2Vl model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
28 |
-
with the defaults will yield a similar configuration to that of the Lfm2-VL-1.6B.
|
29 |
-
|
30 |
-
e.g. [LiquidAI/LFM2-VL-1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B)
|
31 |
-
|
32 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
-
documentation from [`PretrainedConfig`] for more information.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
vision_config (`AutoConfig | dict`, *optional*, defaults to `Siglip2ImageConfig`):
|
37 |
-
The config object or dictionary of the vision backbone.
|
38 |
-
text_config (`AutoConfig | dict`, *optional*, defaults to `Lfm2Config`):
|
39 |
-
The config object or dictionary of the text backbone.
|
40 |
-
image_token_id (`int`, *optional*, defaults to 396):
|
41 |
-
The image token index to encode the image prompt.
|
42 |
-
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
43 |
-
The activation function used by the multimodal projector.
|
44 |
-
projector_hidden_size (`int`, *optional*, defaults to 2056):
|
45 |
-
The hidden size of the multimodal projector.
|
46 |
-
projector_bias (`bool`, *optional*, defaults to `True`):
|
47 |
-
Whether to use bias in the multimodal projector.
|
48 |
-
downsample_factor (`int`, *optional*, defaults to 2):
|
49 |
-
The downsample_factor factor of the vision backbone.
|
50 |
-
vision_feature_layer (`int`, *optional*, defaults to -1):
|
51 |
-
The layer of the vision tower to use as features.
|
52 |
-
min_image_tokens (`int`, *optional*, defaults to 64):
|
53 |
-
The minimum number of image tokens for smart resize.
|
54 |
-
max_image_tokens (`int`, *optional*, defaults to 256):
|
55 |
-
The maximum number of image tokens for smart resize.
|
56 |
-
encoder_patch_size (`int`, *optional*, defaults to 16):
|
57 |
-
The patch size of the encoder.
|
58 |
-
max_num_patches (`int`, *optional*, defaults to 1024):
|
59 |
-
The maximum number of image tokens passed to the encoder per image or tile.
|
60 |
-
use_image_special_tokens (`bool`, *optional*, defaults to `True`):
|
61 |
-
Whether to use image special tokens.
|
62 |
-
do_image_splitting (`bool`, *optional*, defaults to `True`):
|
63 |
-
Whether to split large images into tiles.
|
64 |
-
min_tiles (`int`, *optional*, defaults to 2):
|
65 |
-
The minimum number of tiles to split the image into.
|
66 |
-
max_tiles (`int`, *optional*, defaults to 10):
|
67 |
-
The maximum number of tiles to split the image into.
|
68 |
-
tile_size (`int`, *optional*, defaults to 512):
|
69 |
-
The size of the tile to split the image into.
|
70 |
-
max_pixels_tolerance (`float`, *optional*, defaults to 2.0):
|
71 |
-
The maximum tolerance for the number of pixels in the image before splitting.
|
72 |
-
use_thumbnail (`bool`, *optional*, defaults to `True`):
|
73 |
-
Whether to append the thumbnail of the image when splitting.
|
74 |
-
"""
|
75 |
-
|
76 |
-
model_type = "lfm2-vl"
|
77 |
-
attribute_map = {
|
78 |
-
"image_token_id": "image_token_index",
|
79 |
-
}
|
80 |
-
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
|
81 |
-
|
82 |
-
def __init__(
|
83 |
-
self,
|
84 |
-
vision_config=None,
|
85 |
-
text_config=None,
|
86 |
-
image_token_index=396,
|
87 |
-
projector_hidden_act="gelu",
|
88 |
-
projector_hidden_size=2560,
|
89 |
-
projector_bias=True,
|
90 |
-
downsample_factor=2,
|
91 |
-
vision_feature_layer=-1,
|
92 |
-
min_image_tokens=64,
|
93 |
-
max_image_tokens=256,
|
94 |
-
encoder_patch_size=16,
|
95 |
-
max_num_patches=1024,
|
96 |
-
use_image_special_tokens=True,
|
97 |
-
do_image_splitting=True,
|
98 |
-
min_tiles=2,
|
99 |
-
max_tiles=10,
|
100 |
-
tile_size=512,
|
101 |
-
max_pixels_tolerance=2.0,
|
102 |
-
use_thumbnail=True,
|
103 |
-
torch_dtype=torch.bfloat16,
|
104 |
-
**kwargs,
|
105 |
-
):
|
106 |
-
self.vision_config = vision_config
|
107 |
-
self.text_config = text_config
|
108 |
-
self.image_token_index = image_token_index
|
109 |
-
self.projector_hidden_act = projector_hidden_act
|
110 |
-
self.projector_hidden_size = projector_hidden_size
|
111 |
-
self.projector_bias = projector_bias
|
112 |
-
self.downsample_factor = downsample_factor
|
113 |
-
self.vision_feature_layer = vision_feature_layer
|
114 |
-
self.min_image_tokens = min_image_tokens
|
115 |
-
self.max_image_tokens = max_image_tokens
|
116 |
-
self.encoder_patch_size = encoder_patch_size
|
117 |
-
self.max_num_patches = max_num_patches
|
118 |
-
self.use_image_special_tokens = use_image_special_tokens
|
119 |
-
self.do_image_splitting = do_image_splitting
|
120 |
-
self.min_tiles = min_tiles
|
121 |
-
self.max_tiles = max_tiles
|
122 |
-
self.tile_size = tile_size
|
123 |
-
self.max_pixels_tolerance = max_pixels_tolerance
|
124 |
-
self.use_thumbnail = use_thumbnail
|
125 |
-
self.torch_dtype = torch_dtype
|
126 |
-
|
127 |
-
if isinstance(vision_config, dict):
|
128 |
-
vision_config = Siglip2VisionConfig(**vision_config)
|
129 |
-
elif vision_config is None:
|
130 |
-
vision_config = Siglip2VisionConfig()
|
131 |
-
self.vision_config = vision_config
|
132 |
-
|
133 |
-
self.vision_config = vision_config
|
134 |
-
|
135 |
-
if isinstance(text_config, dict):
|
136 |
-
text_config = Lfm2Config(**text_config)
|
137 |
-
elif text_config is None:
|
138 |
-
text_config = Lfm2Config()
|
139 |
-
|
140 |
-
self.text_config = text_config
|
141 |
-
|
142 |
-
super().__init__(**kwargs)
|
143 |
-
|
144 |
-
|
145 |
-
@dataclass
|
146 |
-
class Lfm2VlModelOutputWithPast(BaseModelOutputWithPast):
|
147 |
-
r"""
|
148 |
-
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
149 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
150 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
151 |
-
|
152 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
153 |
-
`past_key_values` input) to speed up sequential decoding.
|
154 |
-
image_hidden_states (`torch.FloatTensor`, *optional*):
|
155 |
-
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
156 |
-
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
157 |
-
"""
|
158 |
-
|
159 |
-
image_hidden_states: torch.FloatTensor | None = None
|
160 |
-
|
161 |
-
|
162 |
-
@dataclass
|
163 |
-
class Lfm2VlCausalLMOutputWithPast(ModelOutput):
|
164 |
-
r"""
|
165 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
166 |
-
Language modeling loss (for next-token prediction).
|
167 |
-
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
168 |
-
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
169 |
-
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
170 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
171 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
172 |
-
|
173 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
174 |
-
`past_key_values` input) to speed up sequential decoding.
|
175 |
-
image_hidden_states (`torch.FloatTensor`, *optional*):
|
176 |
-
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
177 |
-
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
178 |
-
"""
|
179 |
-
|
180 |
-
loss: torch.FloatTensor | None = None
|
181 |
-
logits: torch.FloatTensor | None = None
|
182 |
-
past_key_values: list[torch.FloatTensor] | None = None
|
183 |
-
hidden_states: tuple[torch.FloatTensor] | None = None
|
184 |
-
attentions: tuple[torch.FloatTensor] | None = None
|
185 |
-
image_hidden_states: torch.FloatTensor | None = None
|
186 |
-
|
187 |
-
|
188 |
-
class Lfm2VlMultiModalProjector(nn.Module):
|
189 |
-
def __init__(self, config: Lfm2VlConfig):
|
190 |
-
super().__init__()
|
191 |
-
in_channels = config.vision_config.hidden_size * (config.downsample_factor**2)
|
192 |
-
self.layer_norm = nn.LayerNorm(in_channels)
|
193 |
-
self.linear_1 = nn.Linear(
|
194 |
-
in_channels,
|
195 |
-
config.projector_hidden_size,
|
196 |
-
bias=config.projector_bias,
|
197 |
-
)
|
198 |
-
self.act = ACT2FN[config.projector_hidden_act]
|
199 |
-
self.linear_2 = nn.Linear(
|
200 |
-
config.projector_hidden_size,
|
201 |
-
config.text_config.hidden_size,
|
202 |
-
bias=config.projector_bias,
|
203 |
-
)
|
204 |
-
|
205 |
-
def forward(self, image_features):
|
206 |
-
image_features = self.layer_norm(image_features)
|
207 |
-
hidden_states = self.linear_1(image_features)
|
208 |
-
hidden_states = self.act(hidden_states)
|
209 |
-
hidden_states = self.linear_2(hidden_states)
|
210 |
-
return hidden_states
|
211 |
-
|
212 |
-
|
213 |
-
class PixelUnshuffleBlock(nn.Module):
|
214 |
-
def __init__(self, factor: int):
|
215 |
-
super().__init__()
|
216 |
-
self.factor = factor
|
217 |
-
|
218 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
219 |
-
n, w, h, c = x.size()
|
220 |
-
if w % self.factor != 0:
|
221 |
-
x = torch.concat(
|
222 |
-
[
|
223 |
-
x,
|
224 |
-
torch.zeros(
|
225 |
-
(n, self.factor - (w % self.factor), h, c), dtype=x.dtype
|
226 |
-
).to(x.device),
|
227 |
-
],
|
228 |
-
dim=1,
|
229 |
-
).contiguous()
|
230 |
-
n, w, h, c = x.size()
|
231 |
-
x = x.contiguous()
|
232 |
-
if h % self.factor != 0:
|
233 |
-
x = torch.concat(
|
234 |
-
[
|
235 |
-
x,
|
236 |
-
torch.zeros(
|
237 |
-
(n, w, self.factor - (h % self.factor), c), dtype=x.dtype
|
238 |
-
).to(x.device),
|
239 |
-
],
|
240 |
-
dim=2,
|
241 |
-
).contiguous()
|
242 |
-
n, w, h, c = x.size()
|
243 |
-
x = x.view(n, w, int(h / self.factor), int(c * self.factor))
|
244 |
-
x = x.permute(0, 2, 1, 3).contiguous()
|
245 |
-
x = x.view(
|
246 |
-
n, int(h / self.factor), int(w / self.factor), int(c * self.factor**2)
|
247 |
-
)
|
248 |
-
x = x.permute(0, 2, 1, 3).contiguous()
|
249 |
-
return x
|
250 |
-
|
251 |
-
|
252 |
-
class Lfm2VlPreTrainedModel(PreTrainedModel):
|
253 |
-
config: Lfm2VlConfig
|
254 |
-
base_model_prefix = ""
|
255 |
-
supports_gradient_checkpointing = True
|
256 |
-
_skip_keys_device_placement = ["past_key_values"]
|
257 |
-
|
258 |
-
_supports_flash_attn = True
|
259 |
-
_supports_sdpa = True
|
260 |
-
|
261 |
-
_can_compile_fullgraph = False
|
262 |
-
_supports_flex_attn = True
|
263 |
-
_supports_attention_backend = True
|
264 |
-
|
265 |
-
|
266 |
-
class Lfm2VlModel(Lfm2VlPreTrainedModel):
|
267 |
-
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
|
268 |
-
|
269 |
-
def __init__(self, config: Lfm2VlConfig):
|
270 |
-
super().__init__(config)
|
271 |
-
self.vision_tower = Siglip2VisionModel(config.vision_config)
|
272 |
-
|
273 |
-
if config.vision_feature_layer != -1:
|
274 |
-
self.vision_tower.vision_model.encoder.layers = (
|
275 |
-
self.vision_tower.vision_model.encoder.layers[
|
276 |
-
: config.vision_feature_layer + 1
|
277 |
-
]
|
278 |
-
)
|
279 |
-
if config.downsample_factor > 1:
|
280 |
-
self.pixel_unshuffle = PixelUnshuffleBlock(config.downsample_factor)
|
281 |
-
else:
|
282 |
-
self.pixel_unshuffle = nn.Identity()
|
283 |
-
|
284 |
-
self.multi_modal_projector = Lfm2VlMultiModalProjector(config)
|
285 |
-
self.language_model = AutoModel.from_config(config.text_config)
|
286 |
-
self.post_init()
|
287 |
-
|
288 |
-
def get_input_embeddings(self):
|
289 |
-
return self.language_model.get_input_embeddings()
|
290 |
-
|
291 |
-
def set_input_embeddings(self, value):
|
292 |
-
self.language_model.set_input_embeddings(value)
|
293 |
-
|
294 |
-
def set_decoder(self, decoder):
|
295 |
-
self.language_model = decoder
|
296 |
-
|
297 |
-
def get_decoder(self):
|
298 |
-
return self.language_model
|
299 |
-
|
300 |
-
def get_image_features(
|
301 |
-
self,
|
302 |
-
pixel_values: torch.FloatTensor,
|
303 |
-
spatial_shapes: torch.Tensor,
|
304 |
-
pixel_attention_mask: torch.Tensor,
|
305 |
-
**kwargs,
|
306 |
-
) -> list[torch.Tensor]:
|
307 |
-
"""
|
308 |
-
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
309 |
-
|
310 |
-
Args:
|
311 |
-
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`):
|
312 |
-
The tensors corresponding to the input images.
|
313 |
-
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`):
|
314 |
-
The spatial shapes of the input images.
|
315 |
-
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`):
|
316 |
-
The pixel attention mask of the input images.
|
317 |
-
Returns:
|
318 |
-
image_features (`list[torch.Tensor]`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
319 |
-
"""
|
320 |
-
image_outputs = self.vision_tower(
|
321 |
-
pixel_values=pixel_values,
|
322 |
-
spatial_shapes=spatial_shapes,
|
323 |
-
pixel_attention_mask=pixel_attention_mask,
|
324 |
-
).last_hidden_state
|
325 |
-
|
326 |
-
img_feature_lengths = pixel_attention_mask.sum(dim=1)
|
327 |
-
image_features = []
|
328 |
-
|
329 |
-
for img_idx in range(image_outputs.size(0)):
|
330 |
-
feature = image_outputs[img_idx]
|
331 |
-
# unpad the image representation
|
332 |
-
feature = feature[: img_feature_lengths[img_idx], :].unsqueeze(0)
|
333 |
-
|
334 |
-
feature_org_h, feature_org_w = spatial_shapes[img_idx]
|
335 |
-
feature = feature.reshape(1, feature_org_h, feature_org_w, -1)
|
336 |
-
feature = self.pixel_unshuffle(feature)
|
337 |
-
|
338 |
-
# project the image representation
|
339 |
-
img_embedding = self.multi_modal_projector(feature)
|
340 |
-
|
341 |
-
# flatten here to handle variable length in naflex
|
342 |
-
img_embedding = img_embedding.reshape(-1, img_embedding.size(-1))
|
343 |
-
image_features.append(img_embedding)
|
344 |
-
|
345 |
-
return image_features
|
346 |
-
|
347 |
-
def get_placeholder_mask(
|
348 |
-
self,
|
349 |
-
input_ids: torch.LongTensor | None,
|
350 |
-
inputs_embeds: torch.FloatTensor,
|
351 |
-
image_features: torch.FloatTensor,
|
352 |
-
):
|
353 |
-
"""
|
354 |
-
Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
|
355 |
-
equal to the length of multimodal features. If the lengths are different, an error is raised.
|
356 |
-
"""
|
357 |
-
if input_ids is None:
|
358 |
-
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
359 |
-
torch.tensor(
|
360 |
-
self.config.image_token_id,
|
361 |
-
dtype=torch.long,
|
362 |
-
device=inputs_embeds.device,
|
363 |
-
)
|
364 |
-
)
|
365 |
-
special_image_mask = special_image_mask.all(-1)
|
366 |
-
else:
|
367 |
-
special_image_mask = input_ids == self.config.image_token_id
|
368 |
-
n_image_tokens = special_image_mask.sum()
|
369 |
-
special_image_mask = (
|
370 |
-
special_image_mask.unsqueeze(-1)
|
371 |
-
.expand_as(inputs_embeds)
|
372 |
-
.to(inputs_embeds.device)
|
373 |
-
)
|
374 |
-
n_image_features = image_features.shape[0]
|
375 |
-
if inputs_embeds[special_image_mask].numel() != image_features.numel():
|
376 |
-
raise ValueError(
|
377 |
-
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
378 |
-
)
|
379 |
-
return special_image_mask
|
380 |
-
|
381 |
-
@can_return_tuple
|
382 |
-
def forward(
|
383 |
-
self,
|
384 |
-
input_ids: torch.LongTensor = None,
|
385 |
-
attention_mask: torch.Tensor | None = None,
|
386 |
-
position_ids: torch.LongTensor | None = None,
|
387 |
-
pixel_values: torch.FloatTensor = None,
|
388 |
-
spatial_shapes: torch.Tensor = None,
|
389 |
-
pixel_attention_mask: torch.Tensor = None,
|
390 |
-
past_key_values: Cache | None = None,
|
391 |
-
inputs_embeds: torch.FloatTensor | None = None,
|
392 |
-
use_cache: bool | None = None,
|
393 |
-
output_attentions: bool | None = None,
|
394 |
-
output_hidden_states: bool | None = None,
|
395 |
-
return_dict: bool | None = None,
|
396 |
-
cache_position: torch.LongTensor | None = None,
|
397 |
-
image_sizes: torch.Tensor = None,
|
398 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
399 |
-
) -> tuple | Lfm2VlModelOutputWithPast:
|
400 |
-
"""
|
401 |
-
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
402 |
-
The spatial shapes of the input images.
|
403 |
-
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
404 |
-
The pixel attention mask of the input images.
|
405 |
-
"""
|
406 |
-
output_attentions = (
|
407 |
-
output_attentions
|
408 |
-
if output_attentions is not None
|
409 |
-
else self.config.output_attentions
|
410 |
-
)
|
411 |
-
output_hidden_states = (
|
412 |
-
output_hidden_states
|
413 |
-
if output_hidden_states is not None
|
414 |
-
else self.config.output_hidden_states
|
415 |
-
)
|
416 |
-
return_dict = (
|
417 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
418 |
-
)
|
419 |
-
|
420 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
421 |
-
raise ValueError(
|
422 |
-
"You must specify exactly one of input_ids or inputs_embeds"
|
423 |
-
)
|
424 |
-
|
425 |
-
if inputs_embeds is None:
|
426 |
-
inputs_embeds = self.get_input_embeddings()(input_ids)
|
427 |
-
|
428 |
-
if pixel_values is not None:
|
429 |
-
image_features = self.get_image_features(
|
430 |
-
pixel_values=pixel_values,
|
431 |
-
spatial_shapes=spatial_shapes,
|
432 |
-
pixel_attention_mask=pixel_attention_mask,
|
433 |
-
)
|
434 |
-
image_features = torch.cat(image_features, dim=0).to(
|
435 |
-
inputs_embeds.device, inputs_embeds.dtype
|
436 |
-
)
|
437 |
-
special_image_mask = self.get_placeholder_mask(
|
438 |
-
input_ids=input_ids,
|
439 |
-
inputs_embeds=inputs_embeds,
|
440 |
-
image_features=image_features,
|
441 |
-
)
|
442 |
-
inputs_embeds = inputs_embeds.masked_scatter(
|
443 |
-
special_image_mask, image_features
|
444 |
-
)
|
445 |
-
|
446 |
-
outputs = self.language_model(
|
447 |
-
attention_mask=attention_mask,
|
448 |
-
position_ids=position_ids,
|
449 |
-
past_key_values=past_key_values,
|
450 |
-
inputs_embeds=inputs_embeds,
|
451 |
-
use_cache=use_cache,
|
452 |
-
output_attentions=output_attentions,
|
453 |
-
output_hidden_states=output_hidden_states,
|
454 |
-
return_dict=True,
|
455 |
-
cache_position=cache_position,
|
456 |
-
**kwargs,
|
457 |
-
)
|
458 |
-
|
459 |
-
return Lfm2VlModelOutputWithPast(
|
460 |
-
last_hidden_state=outputs.last_hidden_state,
|
461 |
-
past_key_values=outputs.past_key_values,
|
462 |
-
hidden_states=outputs.hidden_states,
|
463 |
-
attentions=outputs.attentions,
|
464 |
-
image_hidden_states=image_features if pixel_values is not None else None,
|
465 |
-
)
|
466 |
-
|
467 |
-
|
468 |
-
class Lfm2VlForConditionalGeneration(Lfm2VlPreTrainedModel, GenerationMixin):
|
469 |
-
_tied_weights_keys = ["lm_head.weight"]
|
470 |
-
|
471 |
-
def __init__(self, config: Lfm2VlConfig):
|
472 |
-
super().__init__(config)
|
473 |
-
self.model = Lfm2VlModel(config)
|
474 |
-
self.lm_head = nn.Linear(
|
475 |
-
config.text_config.hidden_size, config.text_config.vocab_size, bias=False
|
476 |
-
)
|
477 |
-
self.post_init()
|
478 |
-
|
479 |
-
def _supports_default_dynamic_cache(self):
|
480 |
-
return False
|
481 |
-
|
482 |
-
def get_input_embeddings(self):
|
483 |
-
return self.model.get_input_embeddings()
|
484 |
-
|
485 |
-
def set_input_embeddings(self, value):
|
486 |
-
self.model.set_input_embeddings(value)
|
487 |
-
|
488 |
-
def get_output_embeddings(self) -> nn.Module:
|
489 |
-
return self.lm_head
|
490 |
-
|
491 |
-
def set_decoder(self, decoder):
|
492 |
-
self.model.set_decoder(decoder)
|
493 |
-
|
494 |
-
def get_decoder(self):
|
495 |
-
return self.model.get_decoder()
|
496 |
-
|
497 |
-
def get_image_features(
|
498 |
-
self,
|
499 |
-
pixel_values: torch.FloatTensor,
|
500 |
-
spatial_shapes: torch.Tensor,
|
501 |
-
pixel_attention_mask: torch.Tensor,
|
502 |
-
**kwargs,
|
503 |
-
):
|
504 |
-
return self.model.get_image_features(
|
505 |
-
pixel_values=pixel_values,
|
506 |
-
spatial_shapes=spatial_shapes,
|
507 |
-
pixel_attention_mask=pixel_attention_mask,
|
508 |
-
**kwargs,
|
509 |
-
)
|
510 |
-
|
511 |
-
@property
|
512 |
-
def language_model(self):
|
513 |
-
return self.model.language_model
|
514 |
-
|
515 |
-
@property
|
516 |
-
def vision_tower(self):
|
517 |
-
return self.model.vision_tower
|
518 |
-
|
519 |
-
@property
|
520 |
-
def multi_modal_projector(self):
|
521 |
-
return self.model.multi_modal_projector
|
522 |
-
|
523 |
-
@can_return_tuple
|
524 |
-
def forward(
|
525 |
-
self,
|
526 |
-
input_ids: torch.LongTensor = None,
|
527 |
-
pixel_values: torch.FloatTensor = None,
|
528 |
-
spatial_shapes: torch.Tensor = None,
|
529 |
-
pixel_attention_mask: torch.Tensor = None,
|
530 |
-
attention_mask: torch.Tensor | None = None,
|
531 |
-
position_ids: torch.LongTensor | None = None,
|
532 |
-
past_key_values: Cache | None = None,
|
533 |
-
inputs_embeds: torch.FloatTensor | None = None,
|
534 |
-
labels: torch.LongTensor | None = None,
|
535 |
-
use_cache: bool | None = None,
|
536 |
-
output_attentions: bool | None = None,
|
537 |
-
output_hidden_states: bool | None = None,
|
538 |
-
return_dict: bool | None = None,
|
539 |
-
cache_position: torch.LongTensor | None = None,
|
540 |
-
logits_to_keep: int | torch.Tensor = 0,
|
541 |
-
image_sizes: torch.Tensor | None = None,
|
542 |
-
**kwargs,
|
543 |
-
) -> tuple | Lfm2VlCausalLMOutputWithPast:
|
544 |
-
r"""
|
545 |
-
pixel_values (`torch.FloatTensor` of shape `(batch_size, channels, height, width)`, *optional*):
|
546 |
-
The input image tensors.
|
547 |
-
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
548 |
-
The spatial shapes of the input images.
|
549 |
-
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
550 |
-
The pixel attention mask of the input images.
|
551 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
552 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
553 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
554 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
555 |
-
|
556 |
-
Example:
|
557 |
-
|
558 |
-
```python
|
559 |
-
>>> from PIL import Image
|
560 |
-
>>> import requests
|
561 |
-
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
562 |
-
>>> from transformers.image_utils import load_image
|
563 |
-
|
564 |
-
>>> model = AutoModelForImageTextToText.from_pretrained(
|
565 |
-
... "LiquidAI/LFM2-VL-1.6B",
|
566 |
-
... trust_remote_code=True
|
567 |
-
... )
|
568 |
-
>>> processor = AutoProcessor.from_pretrained(
|
569 |
-
... "LiquidAI/LFM2-VL-1.6B",
|
570 |
-
... trust_remote_code=True
|
571 |
-
... )
|
572 |
-
|
573 |
-
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
574 |
-
>>> image = load_image(url)
|
575 |
-
|
576 |
-
>>> conversation = [
|
577 |
-
... {
|
578 |
-
... "role": "user",
|
579 |
-
... "content": [
|
580 |
-
... {"type": "image", "image": image},
|
581 |
-
... {"type": "text", "text": "What is in this image?"},
|
582 |
-
... ],
|
583 |
-
... },
|
584 |
-
... ]
|
585 |
-
|
586 |
-
>>> inputs = processor.apply_chat_template(
|
587 |
-
... conversation,
|
588 |
-
... add_generation_prompt=True,
|
589 |
-
... tokenize=True,
|
590 |
-
... return_dict=True,
|
591 |
-
... return_tensors="pt"
|
592 |
-
... )
|
593 |
-
|
594 |
-
>>> # Generate
|
595 |
-
>>> outputs = model.generate(**inputs, max_new_tokens=45)
|
596 |
-
>>> processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
597 |
-
'This image depicts a vibrant street scene in what appears to be a Chinatown or similar cultural area. The focal point is a large red stop sign with white lettering, mounted on a pole.'
|
598 |
-
```"""
|
599 |
-
output_attentions = (
|
600 |
-
output_attentions
|
601 |
-
if output_attentions is not None
|
602 |
-
else self.config.output_attentions
|
603 |
-
)
|
604 |
-
output_hidden_states = (
|
605 |
-
output_hidden_states
|
606 |
-
if output_hidden_states is not None
|
607 |
-
else self.config.output_hidden_states
|
608 |
-
)
|
609 |
-
return_dict = (
|
610 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
611 |
-
)
|
612 |
-
|
613 |
-
outputs = self.model(
|
614 |
-
input_ids=input_ids,
|
615 |
-
pixel_values=pixel_values,
|
616 |
-
spatial_shapes=spatial_shapes,
|
617 |
-
pixel_attention_mask=pixel_attention_mask,
|
618 |
-
attention_mask=attention_mask,
|
619 |
-
position_ids=position_ids,
|
620 |
-
past_key_values=past_key_values,
|
621 |
-
inputs_embeds=inputs_embeds,
|
622 |
-
use_cache=use_cache,
|
623 |
-
output_attentions=output_attentions,
|
624 |
-
output_hidden_states=output_hidden_states,
|
625 |
-
return_dict=True,
|
626 |
-
cache_position=cache_position,
|
627 |
-
image_sizes=image_sizes,
|
628 |
-
**kwargs,
|
629 |
-
)
|
630 |
-
|
631 |
-
hidden_states = outputs[0]
|
632 |
-
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
633 |
-
slice_indices = (
|
634 |
-
slice(-logits_to_keep, None)
|
635 |
-
if isinstance(logits_to_keep, int)
|
636 |
-
else logits_to_keep
|
637 |
-
)
|
638 |
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
639 |
-
|
640 |
-
loss = None
|
641 |
-
if labels is not None:
|
642 |
-
loss = self.loss_function(
|
643 |
-
logits=logits,
|
644 |
-
labels=labels,
|
645 |
-
vocab_size=self.config.text_config.vocab_size,
|
646 |
-
**kwargs,
|
647 |
-
)
|
648 |
-
|
649 |
-
return Lfm2VlCausalLMOutputWithPast(
|
650 |
-
loss=loss,
|
651 |
-
logits=logits,
|
652 |
-
past_key_values=outputs.past_key_values,
|
653 |
-
hidden_states=outputs.hidden_states,
|
654 |
-
attentions=outputs.attentions,
|
655 |
-
image_hidden_states=outputs.image_hidden_states,
|
656 |
-
)
|
657 |
-
|
658 |
-
def prepare_inputs_for_generation(
|
659 |
-
self,
|
660 |
-
input_ids,
|
661 |
-
past_key_values=None,
|
662 |
-
inputs_embeds=None,
|
663 |
-
pixel_values=None,
|
664 |
-
attention_mask=None,
|
665 |
-
cache_position=None,
|
666 |
-
logits_to_keep=None,
|
667 |
-
**kwargs,
|
668 |
-
):
|
669 |
-
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
670 |
-
model_inputs = super().prepare_inputs_for_generation(
|
671 |
-
input_ids,
|
672 |
-
past_key_values=past_key_values,
|
673 |
-
inputs_embeds=inputs_embeds,
|
674 |
-
attention_mask=attention_mask,
|
675 |
-
cache_position=cache_position,
|
676 |
-
logits_to_keep=logits_to_keep,
|
677 |
-
**kwargs,
|
678 |
-
)
|
679 |
-
|
680 |
-
if cache_position[0] == 0:
|
681 |
-
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
682 |
-
# Otherwise we need pixel values to be passed to model
|
683 |
-
model_inputs["pixel_values"] = pixel_values
|
684 |
-
|
685 |
-
return model_inputs
|
686 |
-
|
687 |
-
|
688 |
-
__all__ = ["Lfm2VlForConditionalGeneration", "Lfm2VlModel", "Lfm2VlPreTrainedModel"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processing_lfm2_vl.py
DELETED
@@ -1,645 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from typing import Union
|
3 |
-
|
4 |
-
from PIL import Image
|
5 |
-
from transformers.feature_extraction_utils import BatchFeature
|
6 |
-
from transformers.image_utils import ImageInput, make_nested_list_of_images
|
7 |
-
from transformers.image_transforms import to_pil_image
|
8 |
-
from transformers.processing_utils import (
|
9 |
-
ImagesKwargs,
|
10 |
-
ProcessingKwargs,
|
11 |
-
ProcessorMixin,
|
12 |
-
Unpack,
|
13 |
-
)
|
14 |
-
from transformers.tokenization_utils_base import BatchEncoding, TextInput
|
15 |
-
from transformers.utils import logging
|
16 |
-
|
17 |
-
logger = logging.get_logger(__name__)
|
18 |
-
|
19 |
-
|
20 |
-
# resize adapted from qwen2.5
|
21 |
-
# https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py
|
22 |
-
def round_by_factor(number: float, factor: int) -> int:
|
23 |
-
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
24 |
-
return round(number / factor) * factor
|
25 |
-
|
26 |
-
|
27 |
-
def ceil_by_factor(number: float, factor: int) -> int:
|
28 |
-
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
29 |
-
return math.ceil(number / factor) * factor
|
30 |
-
|
31 |
-
|
32 |
-
def floor_by_factor(number: float, factor: int) -> int:
|
33 |
-
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
34 |
-
return math.floor(number / factor) * factor
|
35 |
-
|
36 |
-
|
37 |
-
def find_closest_aspect_ratio(
|
38 |
-
aspect_ratio: float,
|
39 |
-
target_ratios: list[tuple[int, int]],
|
40 |
-
width: int,
|
41 |
-
height: int,
|
42 |
-
image_size: int,
|
43 |
-
) -> tuple[int, int]:
|
44 |
-
"""Find the closest aspect ratio from target_ratios to match the input aspect ratio.
|
45 |
-
|
46 |
-
Args:
|
47 |
-
aspect_ratio: The aspect ratio to match (width/height).
|
48 |
-
target_ratios: List of possible aspect ratios as tuples of (width, height) integers.
|
49 |
-
width: Original image width in pixels.
|
50 |
-
height: Original image height in pixels.
|
51 |
-
image_size: Base size for calculating target area.
|
52 |
-
|
53 |
-
Returns:
|
54 |
-
tuple[int, int]: The best matching ratio as (width, height) integers.
|
55 |
-
"""
|
56 |
-
best_ratio_diff = float("inf")
|
57 |
-
best_ratio = (1, 1)
|
58 |
-
area = width * height
|
59 |
-
|
60 |
-
for ratio in target_ratios:
|
61 |
-
target_aspect_ratio = ratio[0] / ratio[1]
|
62 |
-
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
63 |
-
|
64 |
-
# update best ratio if we found a closer match
|
65 |
-
if ratio_diff < best_ratio_diff:
|
66 |
-
best_ratio_diff = ratio_diff
|
67 |
-
best_ratio = ratio
|
68 |
-
# if equally close, prefer the ratio that better matches the original image area
|
69 |
-
elif ratio_diff == best_ratio_diff:
|
70 |
-
target_area = image_size * image_size * ratio[0] * ratio[1]
|
71 |
-
if area > 0.5 * target_area:
|
72 |
-
best_ratio = ratio
|
73 |
-
|
74 |
-
return best_ratio
|
75 |
-
|
76 |
-
|
77 |
-
class Lfm2VlImagesKwargs(ImagesKwargs, total=False):
|
78 |
-
return_row_col_info: bool | None
|
79 |
-
max_image_size: dict[str, int] | None
|
80 |
-
|
81 |
-
|
82 |
-
class Lfm2VlProcessorKwargs(ProcessingKwargs, total=False):
|
83 |
-
images_kwargs: Lfm2VlImagesKwargs
|
84 |
-
|
85 |
-
_defaults = {
|
86 |
-
"text_kwargs": {
|
87 |
-
"add_special_tokens": False,
|
88 |
-
"padding": False,
|
89 |
-
"is_split_into_words": False,
|
90 |
-
},
|
91 |
-
"images_kwargs": {
|
92 |
-
"do_resize": False,
|
93 |
-
},
|
94 |
-
}
|
95 |
-
|
96 |
-
|
97 |
-
class Lfm2VlProcessor(ProcessorMixin):
|
98 |
-
r"""
|
99 |
-
Constructs a Lfm2Vl processor which wraps a Lfm2Tokenizer tokenizer and Lfm2Vl image processor into a single processor.
|
100 |
-
|
101 |
-
[`Lfm2VlProcessor`] offers all the functionalities of [`Siglip2ImageProcessor`] and [`Lfm2Tokenizer`].
|
102 |
-
|
103 |
-
Args:
|
104 |
-
image_processor (`Siglip2ImageProcessor`):
|
105 |
-
An instance of [`Siglip2ImageProcessor`]. The image processor is a required input.
|
106 |
-
tokenizer (`PreTrainedTokenizerBase`):
|
107 |
-
An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
|
108 |
-
"""
|
109 |
-
|
110 |
-
attributes = ["image_processor", "tokenizer"]
|
111 |
-
image_processor_class = "Siglip2ImageProcessor"
|
112 |
-
tokenizer_class = "AutoTokenizer"
|
113 |
-
|
114 |
-
def __init__(
|
115 |
-
self,
|
116 |
-
image_processor,
|
117 |
-
tokenizer,
|
118 |
-
chat_template: str,
|
119 |
-
use_image_special_tokens: bool,
|
120 |
-
downsample_factor: int,
|
121 |
-
do_image_splitting: bool,
|
122 |
-
min_tiles: int,
|
123 |
-
max_tiles: int,
|
124 |
-
use_thumbnail: bool,
|
125 |
-
min_image_tokens: int,
|
126 |
-
max_image_tokens: int,
|
127 |
-
encoder_patch_size: int,
|
128 |
-
tile_size: int,
|
129 |
-
max_pixels_tolerance: float,
|
130 |
-
max_num_patches: int,
|
131 |
-
auto_map: dict[str, str] = None,
|
132 |
-
**kwargs,
|
133 |
-
):
|
134 |
-
self.image_token = getattr(tokenizer, "image_token", "<image>")
|
135 |
-
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
|
136 |
-
self.use_image_special_tokens = use_image_special_tokens
|
137 |
-
self.image_start_token = getattr(
|
138 |
-
tokenizer, "image_start_token", "<|image_start|>"
|
139 |
-
)
|
140 |
-
self.image_end_token = getattr(tokenizer, "image_end_token", "<|image_end|>")
|
141 |
-
self.image_thumbnail_token = getattr(
|
142 |
-
tokenizer, "image_thumbnail", "<|img_thumbnail|>"
|
143 |
-
)
|
144 |
-
self.downsample_factor = downsample_factor
|
145 |
-
self.do_image_splitting = do_image_splitting
|
146 |
-
self.min_tiles = min_tiles
|
147 |
-
self.max_tiles = max_tiles
|
148 |
-
self.use_thumbnail = use_thumbnail
|
149 |
-
self.min_image_tokens = min_image_tokens
|
150 |
-
self.max_image_tokens = max_image_tokens
|
151 |
-
self.encoder_patch_size = encoder_patch_size
|
152 |
-
self.tile_size = tile_size
|
153 |
-
self.max_pixels_tolerance = max_pixels_tolerance
|
154 |
-
self.chat_template = chat_template
|
155 |
-
self.auto_map = auto_map
|
156 |
-
super().__init__(
|
157 |
-
image_processor, tokenizer, chat_template=chat_template, **kwargs
|
158 |
-
)
|
159 |
-
self.max_num_patches = max_num_patches
|
160 |
-
self.image_processor.max_num_patches = max_num_patches
|
161 |
-
|
162 |
-
def _high_res_preprocessor(
|
163 |
-
self,
|
164 |
-
image: Image.Image,
|
165 |
-
min_tiles,
|
166 |
-
max_tiles,
|
167 |
-
tile_size,
|
168 |
-
) -> tuple[list[Image.Image], int, int, int]:
|
169 |
-
"""Process a high resolution image into patches.
|
170 |
-
This method splits a high resolution image into a grid of smaller patches while trying to maintain
|
171 |
-
the original aspect ratio. It finds the optimal grid configuration within the specified tile constraints.
|
172 |
-
"""
|
173 |
-
orig_width, orig_height = image.size
|
174 |
-
aspect_ratio = orig_width / orig_height
|
175 |
-
|
176 |
-
# generate valid patch grid configurations (width, height)
|
177 |
-
target_ratios = [
|
178 |
-
(w, h)
|
179 |
-
for n in range(min_tiles, max_tiles + 1)
|
180 |
-
for w in range(1, n + 1)
|
181 |
-
for h in range(1, n + 1)
|
182 |
-
if min_tiles <= w * h <= max_tiles
|
183 |
-
]
|
184 |
-
target_ratios = sorted(set(target_ratios), key=lambda x: x[0] * x[1])
|
185 |
-
|
186 |
-
# default to 1x1 if no valid configurations found
|
187 |
-
if not target_ratios:
|
188 |
-
return [], 0, 0
|
189 |
-
|
190 |
-
# find best matching grid configuration
|
191 |
-
grid_width, grid_height = find_closest_aspect_ratio(
|
192 |
-
aspect_ratio, target_ratios, orig_width, orig_height, tile_size
|
193 |
-
)
|
194 |
-
|
195 |
-
target_width = tile_size * grid_width
|
196 |
-
target_height = tile_size * grid_height
|
197 |
-
total_patches = grid_width * grid_height
|
198 |
-
|
199 |
-
# resize and split image into patches
|
200 |
-
resized_img = image.resize((target_width, target_height))
|
201 |
-
patches = []
|
202 |
-
|
203 |
-
for i in range(total_patches):
|
204 |
-
# calculate patch coordinates
|
205 |
-
col = i % grid_width
|
206 |
-
row = i // grid_width
|
207 |
-
box = (
|
208 |
-
col * tile_size,
|
209 |
-
row * tile_size,
|
210 |
-
(col + 1) * tile_size,
|
211 |
-
(row + 1) * tile_size,
|
212 |
-
)
|
213 |
-
patch = resized_img.crop(box)
|
214 |
-
patches.append(patch)
|
215 |
-
|
216 |
-
num_rows = grid_height
|
217 |
-
num_columns = grid_width
|
218 |
-
|
219 |
-
return patches, num_rows, num_columns
|
220 |
-
|
221 |
-
def _smart_resize(
|
222 |
-
self,
|
223 |
-
image: Image.Image,
|
224 |
-
downsample_factor: int,
|
225 |
-
min_image_tokens: int,
|
226 |
-
max_image_tokens: int,
|
227 |
-
encoder_patch_size: int,
|
228 |
-
) -> Image.Image:
|
229 |
-
"""
|
230 |
-
Rescales the image so that the following conditions are met:
|
231 |
-
1. Both dimensions (height and width) are divisible by 'encoder_patch_size' * 'downsample_factor'.
|
232 |
-
This ensures no padding is needed in the downsampling step.
|
233 |
-
2. The total number of pixels is within the range ['smart_resize_min_pixels', 'smart_resize_max_pixels'].
|
234 |
-
3. The aspect ratio of the image is maintained as closely as possible.
|
235 |
-
"""
|
236 |
-
width, height = image.size
|
237 |
-
|
238 |
-
total_factor = encoder_patch_size * downsample_factor
|
239 |
-
smart_resize_min_pixels = (
|
240 |
-
min_image_tokens
|
241 |
-
* encoder_patch_size ** 2
|
242 |
-
* downsample_factor ** 2
|
243 |
-
)
|
244 |
-
smart_resize_max_pixels = (
|
245 |
-
max_image_tokens
|
246 |
-
* encoder_patch_size ** 2
|
247 |
-
* downsample_factor ** 2
|
248 |
-
)
|
249 |
-
|
250 |
-
h_bar = max(total_factor, round_by_factor(height, total_factor))
|
251 |
-
w_bar = max(total_factor, round_by_factor(width, total_factor))
|
252 |
-
|
253 |
-
if h_bar * w_bar > smart_resize_max_pixels:
|
254 |
-
beta = math.sqrt((height * width) / smart_resize_max_pixels)
|
255 |
-
h_bar = max(total_factor, floor_by_factor(height / beta, total_factor))
|
256 |
-
w_bar = max(total_factor, floor_by_factor(width / beta, total_factor))
|
257 |
-
elif h_bar * w_bar < smart_resize_min_pixels:
|
258 |
-
beta = math.sqrt(smart_resize_min_pixels / (height * width))
|
259 |
-
h_bar = ceil_by_factor(height * beta, total_factor)
|
260 |
-
w_bar = ceil_by_factor(width * beta, total_factor)
|
261 |
-
|
262 |
-
resized_img = image.resize((w_bar, h_bar))
|
263 |
-
return resized_img
|
264 |
-
|
265 |
-
def _get_tokens_num(self, image_height: int, image_width: int) -> int:
|
266 |
-
num_patches_height = image_height // self.encoder_patch_size
|
267 |
-
num_patches_width = image_width // self.encoder_patch_size
|
268 |
-
|
269 |
-
dwn_num_patches_height = math.ceil(num_patches_height / self.downsample_factor)
|
270 |
-
dwn_num_patches_width = math.ceil(num_patches_width / self.downsample_factor)
|
271 |
-
|
272 |
-
return dwn_num_patches_height * dwn_num_patches_width
|
273 |
-
|
274 |
-
def _is_img_too_large(
|
275 |
-
self,
|
276 |
-
image: Image.Image,
|
277 |
-
max_image_tokens: int,
|
278 |
-
encoder_patch_size: int,
|
279 |
-
max_pixels_tolerance: float,
|
280 |
-
) -> bool:
|
281 |
-
"""Check if the image is too large to be processed as one tile."""
|
282 |
-
width, height = image.size
|
283 |
-
|
284 |
-
h_bar = max(encoder_patch_size, round_by_factor(height, encoder_patch_size))
|
285 |
-
w_bar = max(encoder_patch_size, round_by_factor(width, encoder_patch_size))
|
286 |
-
return (
|
287 |
-
h_bar * w_bar
|
288 |
-
> max_image_tokens
|
289 |
-
* encoder_patch_size ** 2
|
290 |
-
* self.downsample_factor ** 2
|
291 |
-
* max_pixels_tolerance
|
292 |
-
)
|
293 |
-
|
294 |
-
def _resize_and_maybe_split(
|
295 |
-
self,
|
296 |
-
image: ImageInput,
|
297 |
-
downsample_factor: int,
|
298 |
-
min_tiles: int,
|
299 |
-
max_tiles: int,
|
300 |
-
use_thumbnail: bool,
|
301 |
-
min_image_tokens: int,
|
302 |
-
max_image_tokens: int,
|
303 |
-
encoder_patch_size: int,
|
304 |
-
tile_size: int,
|
305 |
-
max_pixels_tolerance: float,
|
306 |
-
) -> tuple[list[Image.Image], int, int, int, int]:
|
307 |
-
"""Apply smart resize and maybe split the image into tiles if image too large.
|
308 |
-
Return:
|
309 |
-
image_tiles: ImageInput
|
310 |
-
num_tokens_per_tile: int
|
311 |
-
num_rows: int
|
312 |
-
num_cols: int
|
313 |
-
num_thumbnail_tokens: int
|
314 |
-
"""
|
315 |
-
image = to_pil_image(image)
|
316 |
-
do_image_splitting = not min_tiles == max_tiles == 1
|
317 |
-
if (
|
318 |
-
self._is_img_too_large(
|
319 |
-
image,
|
320 |
-
max_image_tokens,
|
321 |
-
encoder_patch_size,
|
322 |
-
max_pixels_tolerance,
|
323 |
-
)
|
324 |
-
and do_image_splitting
|
325 |
-
):
|
326 |
-
image_tiles, num_rows, num_cols = self._high_res_preprocessor(
|
327 |
-
image, min_tiles, max_tiles, tile_size
|
328 |
-
)
|
329 |
-
if len(image_tiles) > 1:
|
330 |
-
num_thumbnail_tokens = 0
|
331 |
-
if use_thumbnail:
|
332 |
-
thumbnail_image = self._smart_resize(
|
333 |
-
image,
|
334 |
-
downsample_factor,
|
335 |
-
min_image_tokens,
|
336 |
-
max_image_tokens,
|
337 |
-
encoder_patch_size,
|
338 |
-
)
|
339 |
-
num_thumbnail_tokens = self._get_tokens_num(
|
340 |
-
thumbnail_image.height, thumbnail_image.width
|
341 |
-
)
|
342 |
-
image_tiles.append(thumbnail_image)
|
343 |
-
|
344 |
-
return (
|
345 |
-
image_tiles,
|
346 |
-
self._get_tokens_num(tile_size, tile_size),
|
347 |
-
num_rows,
|
348 |
-
num_cols,
|
349 |
-
num_thumbnail_tokens,
|
350 |
-
)
|
351 |
-
else:
|
352 |
-
image = self._smart_resize(
|
353 |
-
image,
|
354 |
-
downsample_factor,
|
355 |
-
min_image_tokens,
|
356 |
-
max_image_tokens,
|
357 |
-
encoder_patch_size,
|
358 |
-
)
|
359 |
-
return [image], self._get_tokens_num(image.height, image.width), 1, 1, 0
|
360 |
-
|
361 |
-
def process_vision(
|
362 |
-
self,
|
363 |
-
text: list[str],
|
364 |
-
images: list[list[ImageInput]],
|
365 |
-
use_image_special_tokens: bool,
|
366 |
-
downsample_factor: int,
|
367 |
-
min_tiles: int,
|
368 |
-
max_tiles: int,
|
369 |
-
use_thumbnail: bool,
|
370 |
-
min_image_tokens: int,
|
371 |
-
max_image_tokens: int,
|
372 |
-
encoder_patch_size: int,
|
373 |
-
tile_size: int,
|
374 |
-
max_pixels_tolerance: float,
|
375 |
-
output_kwargs: dict,
|
376 |
-
):
|
377 |
-
if text is not None:
|
378 |
-
n_images_in_text = [sample.count(self.image_token) for sample in text]
|
379 |
-
|
380 |
-
n_images_in_images = [len(sublist) for sublist in images]
|
381 |
-
|
382 |
-
if n_images_in_images != n_images_in_text:
|
383 |
-
raise ValueError(
|
384 |
-
f"The number of images in the text {n_images_in_text} and images {n_images_in_images} should be the same."
|
385 |
-
)
|
386 |
-
|
387 |
-
prompt_strings = []
|
388 |
-
image_inputs = []
|
389 |
-
|
390 |
-
for sample_text, sample_images in zip(text, images, strict=False):
|
391 |
-
split_sample = sample_text.split(self.image_token)
|
392 |
-
sample_tiles = []
|
393 |
-
sample_text_with_image_tokens = ""
|
394 |
-
for i, image in enumerate(sample_images):
|
395 |
-
sample_text_with_image_tokens += split_sample[i]
|
396 |
-
if use_image_special_tokens:
|
397 |
-
sample_text_with_image_tokens += self.image_start_token
|
398 |
-
(
|
399 |
-
image_tiles,
|
400 |
-
num_tokens_per_tile,
|
401 |
-
num_rows,
|
402 |
-
num_cols,
|
403 |
-
num_thumbnail_tokens,
|
404 |
-
) = self._resize_and_maybe_split(
|
405 |
-
image,
|
406 |
-
downsample_factor,
|
407 |
-
min_tiles,
|
408 |
-
max_tiles,
|
409 |
-
use_thumbnail,
|
410 |
-
min_image_tokens,
|
411 |
-
max_image_tokens,
|
412 |
-
encoder_patch_size,
|
413 |
-
tile_size,
|
414 |
-
max_pixels_tolerance,
|
415 |
-
)
|
416 |
-
|
417 |
-
if len(image_tiles) > 1:
|
418 |
-
for row in range(num_rows):
|
419 |
-
for col in range(num_cols):
|
420 |
-
if use_image_special_tokens:
|
421 |
-
sample_text_with_image_tokens += (
|
422 |
-
f"<|img_row_{row + 1}_col_{col + 1}|>"
|
423 |
-
)
|
424 |
-
sample_text_with_image_tokens += (
|
425 |
-
self.image_token * num_tokens_per_tile
|
426 |
-
)
|
427 |
-
|
428 |
-
if num_thumbnail_tokens > 0:
|
429 |
-
if use_image_special_tokens:
|
430 |
-
sample_text_with_image_tokens += self.image_thumbnail_token
|
431 |
-
sample_text_with_image_tokens += (
|
432 |
-
self.image_token * num_thumbnail_tokens
|
433 |
-
)
|
434 |
-
else:
|
435 |
-
sample_text_with_image_tokens += (
|
436 |
-
self.image_token * num_tokens_per_tile
|
437 |
-
)
|
438 |
-
|
439 |
-
if use_image_special_tokens:
|
440 |
-
sample_text_with_image_tokens += self.image_end_token
|
441 |
-
|
442 |
-
sample_text_with_image_tokens += split_sample[i + 1]
|
443 |
-
sample_tiles.extend(image_tiles)
|
444 |
-
|
445 |
-
prompt_strings.append(sample_text_with_image_tokens)
|
446 |
-
image_inputs.append(sample_tiles)
|
447 |
-
|
448 |
-
image_inputs = self.image_processor(
|
449 |
-
image_inputs, **output_kwargs["images_kwargs"]
|
450 |
-
)
|
451 |
-
|
452 |
-
if text is None:
|
453 |
-
return None, image_inputs
|
454 |
-
|
455 |
-
return prompt_strings, image_inputs
|
456 |
-
|
457 |
-
def __call__(
|
458 |
-
self,
|
459 |
-
images: ImageInput | list[ImageInput] | list[list[ImageInput]] = None,
|
460 |
-
text: Union[TextInput, "PreTokenizedInput", list[TextInput], list["PreTokenizedInput"]] = None,
|
461 |
-
use_image_special_tokens: bool | None = None,
|
462 |
-
downsample_factor: int | None = None,
|
463 |
-
min_image_tokens: int | None = None,
|
464 |
-
max_image_tokens: int | None = None,
|
465 |
-
do_image_splitting: bool | None = None,
|
466 |
-
min_tiles: int | None = None,
|
467 |
-
max_tiles: int | None = None,
|
468 |
-
use_thumbnail: bool | None = None,
|
469 |
-
encoder_patch_size: int | None = None,
|
470 |
-
tile_size: int | None = None,
|
471 |
-
max_pixels_tolerance: float | None = None,
|
472 |
-
**kwargs: Unpack[Lfm2VlProcessorKwargs],
|
473 |
-
) -> BatchEncoding:
|
474 |
-
"""
|
475 |
-
Processes the input prompts and returns a BatchFeature.
|
476 |
-
|
477 |
-
Example:
|
478 |
-
|
479 |
-
```python
|
480 |
-
>>> import requests
|
481 |
-
>>> from transformers import AutoProcessor
|
482 |
-
>>> from transformers.image_utils import load_image
|
483 |
-
>>> processor = AutoProcessor.from_pretrained("LiquidAI/LFM2-VL-1.6B", trust_remote_code=True)
|
484 |
-
|
485 |
-
>>> url1 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
486 |
-
>>> url2 = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
|
487 |
-
|
488 |
-
>>> image1, image2 = load_image(url1), load_image(url2)
|
489 |
-
>>> images = [image1, image2]
|
490 |
-
|
491 |
-
>>> conversation = [
|
492 |
-
... {
|
493 |
-
... "role": "user",
|
494 |
-
... "content": [
|
495 |
-
... {"type": "image", "url": image1},
|
496 |
-
... {"type": "image", "url": image2},
|
497 |
-
... {"type": "text", "text": "Compare the two images."},
|
498 |
-
... ],
|
499 |
-
... },
|
500 |
-
... ]
|
501 |
-
>>> chat_inputs = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
502 |
-
>>> outputs = processor(images=images, text=chat_inputs, return_tensors="pt")
|
503 |
-
>>> input_ids = outputs.input_ids
|
504 |
-
>>> input_tokens = processor.tokenizer.batch_decode(input_ids)
|
505 |
-
>>> print(input_tokens)
|
506 |
-
'['user\nCompare the two images.\nassistant\n']'
|
507 |
-
```
|
508 |
-
|
509 |
-
Args:
|
510 |
-
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`, *optional*):
|
511 |
-
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
512 |
-
tensor. If is of type `list[ImageInput]`, it's assumed that this is for a single prompt i.e. of batch size 1.
|
513 |
-
text (`TextInput`, *optional*):
|
514 |
-
The sequence or batch of sequences to be encoded.
|
515 |
-
Wherever an image token, `<image>` is encountered it is expanded to a proper sequence of image tokens.
|
516 |
-
return_tensors (`str | TensorType`, *optional*):
|
517 |
-
If set, will return tensors of a particular framework. See [`PreTrainedTokenizerFast.__call__`] for more
|
518 |
-
information.
|
519 |
-
"""
|
520 |
-
use_image_special_tokens = (
|
521 |
-
use_image_special_tokens
|
522 |
-
if use_image_special_tokens is not None
|
523 |
-
else self.use_image_special_tokens
|
524 |
-
)
|
525 |
-
downsample_factor = (
|
526 |
-
downsample_factor
|
527 |
-
if downsample_factor is not None
|
528 |
-
else self.downsample_factor
|
529 |
-
)
|
530 |
-
do_image_splitting = (
|
531 |
-
do_image_splitting
|
532 |
-
if do_image_splitting is not None
|
533 |
-
else self.do_image_splitting
|
534 |
-
)
|
535 |
-
|
536 |
-
min_tiles = min_tiles if min_tiles is not None else self.min_tiles
|
537 |
-
max_tiles = max_tiles if max_tiles is not None else self.max_tiles
|
538 |
-
|
539 |
-
if not do_image_splitting:
|
540 |
-
min_tiles = 1
|
541 |
-
max_tiles = 1
|
542 |
-
logger.debug(
|
543 |
-
"Image splitting is disabled, setting min_tiles and max_tiles to 1. Set do_image_splitting=True to enable splitting."
|
544 |
-
)
|
545 |
-
|
546 |
-
if do_image_splitting and min_tiles > max_tiles:
|
547 |
-
raise ValueError("min_tiles must be less than or equal to max_tiles")
|
548 |
-
|
549 |
-
use_thumbnail = (
|
550 |
-
use_thumbnail if use_thumbnail is not None else self.use_thumbnail
|
551 |
-
)
|
552 |
-
min_image_tokens = (
|
553 |
-
min_image_tokens if min_image_tokens is not None else self.min_image_tokens
|
554 |
-
)
|
555 |
-
max_image_tokens = (
|
556 |
-
max_image_tokens if max_image_tokens is not None else self.max_image_tokens
|
557 |
-
)
|
558 |
-
encoder_patch_size = (
|
559 |
-
encoder_patch_size
|
560 |
-
if encoder_patch_size is not None
|
561 |
-
else self.encoder_patch_size
|
562 |
-
)
|
563 |
-
tile_size = tile_size if tile_size is not None else self.tile_size
|
564 |
-
max_pixels_tolerance = (
|
565 |
-
max_pixels_tolerance
|
566 |
-
if max_pixels_tolerance is not None
|
567 |
-
else self.max_pixels_tolerance
|
568 |
-
)
|
569 |
-
|
570 |
-
if text is None and images is None:
|
571 |
-
raise ValueError("You must provide one of `text` or `images`.")
|
572 |
-
|
573 |
-
output_kwargs = self._merge_kwargs(
|
574 |
-
Lfm2VlProcessorKwargs,
|
575 |
-
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
576 |
-
**kwargs,
|
577 |
-
)
|
578 |
-
|
579 |
-
if text is not None:
|
580 |
-
if isinstance(text, str):
|
581 |
-
text = [text]
|
582 |
-
elif not isinstance(text, list) and not isinstance(text[0], str):
|
583 |
-
raise ValueError(
|
584 |
-
"Invalid input text. Please provide a string, or a list of strings"
|
585 |
-
)
|
586 |
-
n_images_in_text = sum([sample.count(self.image_token) for sample in text])
|
587 |
-
if n_images_in_text > 0 and (images is None):
|
588 |
-
raise ValueError(
|
589 |
-
f"We detected {n_images_in_text} tokens in the text but no images were passed"
|
590 |
-
)
|
591 |
-
|
592 |
-
inputs = {}
|
593 |
-
|
594 |
-
if images is not None:
|
595 |
-
images = make_nested_list_of_images(images)
|
596 |
-
text, vision_inputs = self.process_vision(
|
597 |
-
text,
|
598 |
-
images,
|
599 |
-
use_image_special_tokens,
|
600 |
-
downsample_factor,
|
601 |
-
min_tiles,
|
602 |
-
max_tiles,
|
603 |
-
use_thumbnail,
|
604 |
-
min_image_tokens,
|
605 |
-
max_image_tokens,
|
606 |
-
encoder_patch_size,
|
607 |
-
tile_size,
|
608 |
-
max_pixels_tolerance,
|
609 |
-
output_kwargs,
|
610 |
-
)
|
611 |
-
inputs.update(vision_inputs)
|
612 |
-
|
613 |
-
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
614 |
-
|
615 |
-
if text is not None:
|
616 |
-
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
617 |
-
self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
|
618 |
-
inputs.update(text_inputs)
|
619 |
-
|
620 |
-
return BatchFeature(inputs, tensor_type=return_tensors)
|
621 |
-
|
622 |
-
def batch_decode(self, *args, **kwargs):
|
623 |
-
"""
|
624 |
-
This method forwards all its arguments to LFM2Tokeniser's [`~PreTrainedTokenizer.batch_decode`]. Please
|
625 |
-
refer to the docstring of this method for more information.
|
626 |
-
"""
|
627 |
-
batched_decode_output = self.tokenizer.batch_decode(*args, **kwargs)
|
628 |
-
return batched_decode_output
|
629 |
-
|
630 |
-
def decode(self, *args, **kwargs):
|
631 |
-
"""
|
632 |
-
This method forwards all its arguments to LFM2Tokeniser's [`~PreTrainedTokenizer.decode`]. Please refer to
|
633 |
-
the docstring of this method for more information.
|
634 |
-
"""
|
635 |
-
decode_output = self.tokenizer.decode(*args, **kwargs)
|
636 |
-
return decode_output
|
637 |
-
|
638 |
-
@property
|
639 |
-
def model_input_names(self):
|
640 |
-
tokenizer_input_names = self.tokenizer.model_input_names
|
641 |
-
image_processor_input_names = self.image_processor.model_input_names
|
642 |
-
return list(dict.fromkeys(image_processor_input_names + tokenizer_input_names))
|
643 |
-
|
644 |
-
|
645 |
-
__all__ = ["Lfm2VlProcessor"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|