MISHANM/Farsi_eng_text_generation_Llama3_8B_instruct
This model has been carefully fine-tuned to work with the Farsi language. It can answer questions and translate text between English and Farsi. Using advanced natural language processing techniques, it provides accurate and context-aware responses. This means it understands the details and subtleties of Farsi, making its answers reliable and relevant in different situations.
Model Details
- Language: Farsi
- Tasks: Question Answering(Farsito Farsi) , Translation (Farsi to English)
- Base Model: meta-llama/Meta-Llama-3-8B-Instruct
Training Details
The model is trained on approx 110000 instruction samples.
- GPUs: 4*AMD Radeon™ PRO V620
- Training Time: 100:52:29
Inference with HuggingFace
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Farsi_eng_text_generation_Llama3_8B_instruct"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
   # Format the prompt according to the chat template
   messages = [
       {
           "role": "system",
           "content": "You are a Farsi language expert and linguist, with same knowledge give response in Farsi language.",
       },
       {"role": "user", "content": prompt}
   ]
   # Apply the chat template
   formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
   # Tokenize and generate output
   inputs = tokenizer(formatted_prompt, return_tensors="pt")
   output = model.generate(  
       **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
   )
   return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """روزی روزگاری در یک دریاچه بزرگ، یک کایاک قهوه ای رنگ بود. کایاک قهوه ای دوست داشت تمام روز در آب غلت بزند. وقتی می توانست در دریاچه غلت بزند و پاشیده شود بسیار خوشحال شد."""
translated_text = generate_text(prompt)
print(translated_text)
Citation Information
@misc{MISHANM/Farsi_eng_text_generation_Llama3_8B_instruct,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Farsi Language},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
- PEFT 0.12.0
- Downloads last month
- 2
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	🙋
			
		Ask for provider support
Model tree for MISHANM/Farsi_eng_text_generation_Llama3_8B_instruct
Base model
meta-llama/Meta-Llama-3-8B-Instruct