Clickbait Detection Model (Logistic Regression)
ูุฐุง ูู ูุฐุฌ ุชุนูู ุขูุฉ (Scikit-learn Pipeline) ุชู ุชุฏุฑูุจู ูุชุตููู ุนูุงููู ุงูุฃุฎุจุงุฑ (Headlines) ุฅูู "Clickbait" (ุนููุงู ู ุซูุฑ) ุฃู "Not Clickbait" (ุนููุงู ุนุงุฏู).
๐ ููู ุชุณุชุฎุฏู ุงููู ูุฐุฌ
ุชู
ุญูุธ ุงููู
ูุฐุฌ ูู Pipeline ูุงู
ู ู
ู sklearnุ ููู ูุชุถู
ู TfidfVectorizer ู LogisticRegression. ูุฐุง ูุนูู ุฃูู ูุชุนุงู
ู ู
ุน ุงููุต ู
ุจุงุดุฑุฉ.
import joblib
# ูู
ุจุชุญู
ูู ุงููู
ูุฐุฌ ู
ู Hugging Face Hub
# (ุชุฃูุฏ ู
ู ุชุซุจูุช huggingface_hub: pip install huggingface_hub)
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id="[Ma120]/[clickbait-detector]", filename="clickbait_model.pkl")
model = joblib.load(model_path)
# ุงุฎุชุจุฑ ุงููู
ูุฐุฌ
headlines = [
"You Won't Believe What Happens Next!",
"Local Library Announces Summer Reading Program",
"10 Signs You're a Genius (Number 7 Will Shock You)",
"Government Passes New Budget Bill"
]
predictions = model.predict(headlines)
# 1 = Clickbait, 0 = Not Clickbait
for headline, pred in zip(headlines, predictions):
label = "Clickbait" if pred == 1 else "Not Clickbait"
print(f"[{label}] {headline}")
# ูู
ููู ุฃูุถุงู ุงูุญุตูู ุนูู ุงูุงุญุชู
ุงูุงุช
# probabilities = model.predict_proba(headlines)
# print(probabilities)
- Downloads last month
- -