|
---
|
|
license: mit
|
|
tags:
|
|
- codellama
|
|
- linux
|
|
- bugfix
|
|
- lora
|
|
- qlora
|
|
- git-diff
|
|
base_model: codellama/CodeLLaMA-7b-Instruct-hf
|
|
model_type: LlamaForCausalLM
|
|
library_name: peft
|
|
pipeline_tag: text-generation
|
|
---
|
|
|
|
# CodeLLaMA-Linux-BugFix
|
|
|
|
A fine-tuned version of `CodeLLaMA-7B-Instruct`, designed specifically for Linux kernel bug fixing using QLoRA (Quantized Low-Rank Adaptation). The model learns to generate Git diff patches based on buggy C code and commit messages.
|
|
|
|
---
|
|
|
|
## π― Overview
|
|
|
|
This project targets automated Linux kernel bug fixing by:
|
|
|
|
- **Mining real commit data** from the kernel Git history
|
|
- **Training a specialized QLoRA model** on diff-style fixes
|
|
- **Generating Git patches** in response to bug-prone code
|
|
- **Evaluating results** using BLEU, ROUGE, and human inspection
|
|
|
|
The model achieves strong performance in generating accurate Linux kernel bug fixes, making it a valuable tool for automated code review and bug detection.
|
|
|
|
---
|
|
|
|
## π Performance Results
|
|
|
|
### Evaluation Metrics
|
|
|
|
β
**BLEU Score**: 33.87
|
|
|
|
β
**ROUGE Scores**:
|
|
- **ROUGE-1**: P=0.3775, R=0.7306, F1=0.4355
|
|
- **ROUGE-2**: P=0.2898, R=0.6096, F1=0.3457
|
|
- **ROUGE-L**: P=0.3023, R=0.6333, F1=0.3612
|
|
|
|
These results demonstrate the model's ability to:
|
|
- Generate syntactically correct Git diff patches
|
|
- Maintain semantic similarity to reference fixes
|
|
- Produce meaningful code changes that address the underlying bugs
|
|
|
|
---
|
|
|
|
## π§ Model Configuration
|
|
|
|
- **Base model**: `CodeLLaMA-7B-Instruct`
|
|
- **Fine-tuning method**: QLoRA with 4-bit quantization
|
|
- **Training setup**:
|
|
- LoRA r=64, alpha=16, dropout=0.1
|
|
- Batch size: 64, LR: 2e-4, Epochs: 3
|
|
- Mixed precision (bfloat16), gradient checkpointing
|
|
- **Hardware**: Optimized for NVIDIA H200 GPUs
|
|
|
|
---
|
|
|
|
## π Dataset
|
|
|
|
Custom dataset extracted from Linux kernel Git history.
|
|
|
|
### Filtering Criteria
|
|
Bug-fix commits containing:
|
|
`fix`, `bug`, `crash`, `memory`, `null`, `panic`, `overflow`, `race`, `corruption`, etc.
|
|
|
|
### Structure
|
|
- Language: C (`.c`, `.h`)
|
|
- Context: 10 lines before/after the change
|
|
- Format:
|
|
|
|
```json
|
|
{
|
|
"input": {
|
|
"original code": "C code snippet with bug",
|
|
"instruction": "Commit message or fix description"
|
|
},
|
|
"output": {
|
|
"diff codes": "Git diff showing the fix"
|
|
}
|
|
}
|
|
```
|
|
|
|
* **File**: `training_data_100k.jsonl` (100,000 samples)
|
|
|
|
---
|
|
|
|
## π Quick Start
|
|
|
|
### Prerequisites
|
|
|
|
- Python 3.8+
|
|
- CUDA-compatible GPU (recommended)
|
|
- 16GB+ RAM
|
|
- 50GB+ disk space
|
|
|
|
### Install dependencies
|
|
|
|
```bash
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
### 1. Build the Dataset
|
|
|
|
```bash
|
|
cd dataset_builder
|
|
python extract_linux_bugfixes_parallel.py
|
|
python format_for_training.py
|
|
```
|
|
|
|
### 2. Fine-tune the Model
|
|
|
|
```bash
|
|
cd train
|
|
python train_codellama_qlora_linux_bugfix.py
|
|
```
|
|
|
|
### 3. Run Evaluation
|
|
|
|
```bash
|
|
cd evaluate
|
|
python evaluate_linux_bugfix_model.py
|
|
```
|
|
|
|
### 4. Use the Model
|
|
|
|
```python
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
from peft import PeftModel
|
|
|
|
# Load the fine-tuned model
|
|
model = AutoModelForCausalLM.from_pretrained("codellama/CodeLLaMA-7b-Instruct-hf")
|
|
model = PeftModel.from_pretrained(model, "train/output/qlora-codellama-bugfix")
|
|
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLLaMA-7b-Instruct-hf")
|
|
|
|
# Generate a bug fix
|
|
prompt = """
|
|
Given the following original C code:
|
|
```c
|
|
if (!file->filter)
|
|
return;
|
|
```
|
|
|
|
Instruction: Fix the null pointer dereference
|
|
|
|
Return the diff that fixes it:
|
|
"""
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt")
|
|
outputs = model.generate(**inputs, max_length=512, temperature=0.1)
|
|
fix = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
print(fix)
|
|
```
|
|
|
|
---
|
|
|
|
## π Project Structure
|
|
|
|
```
|
|
CodeLLaMA-Linux-BugFix/
|
|
βββ dataset_builder/
|
|
β βββ extract_linux_bugfixes_parallel.py # Parallel extraction of bug fixes
|
|
β βββ format_for_training.py # Format data for training
|
|
β βββ build_dataset.py # Main dataset builder
|
|
βββ dataset/
|
|
β βββ training_data_100k.jsonl # 100K training samples
|
|
β βββ training_data_prompt_completion.jsonl # Formatted training data
|
|
βββ train/
|
|
β βββ train_codellama_qlora_linux_bugfix.py # Main training script
|
|
β βββ train_codellama_qlora_simple.py # Simplified training
|
|
β βββ download_codellama_model.py # Model download utility
|
|
β βββ output/
|
|
β βββ qlora-codellama-bugfix/ # Trained model checkpoints
|
|
βββ evaluate/
|
|
β βββ evaluate_linux_bugfix_model.py # Evaluation script
|
|
β βββ test_samples.jsonl # Test dataset
|
|
β βββ output/ # Evaluation results
|
|
β βββ eval_results.csv # Detailed results
|
|
β βββ eval_results.json # JSON format results
|
|
βββ requirements.txt # Python dependencies
|
|
βββ README.md # This file
|
|
βββ PROJECT_STRUCTURE.md # Detailed project overview
|
|
```
|
|
|
|
---
|
|
|
|
## π§© Features
|
|
|
|
* π§ **Efficient Fine-tuning**: QLoRA + 4-bit quant = massive memory savings
|
|
* π§ **Real-world commits**: From actual Linux kernel development
|
|
* π‘ **Context-aware**: Code context extraction around bug lines
|
|
* π» **Output-ready**: Generates valid Git-style diffs
|
|
* π **Strong Performance**: BLEU score of 33.87 with good ROUGE metrics
|
|
* π **Production-ready**: Optimized for real-world deployment
|
|
|
|
---
|
|
|
|
## π Evaluation Metrics
|
|
|
|
* **BLEU**: Translation-style match to reference diffs
|
|
* **ROUGE**: Overlap in fix content and semantic similarity
|
|
* **Human Evaluation**: Subjective patch quality assessment
|
|
|
|
### Current Performance
|
|
- **BLEU Score**: 33.87 (excellent for code generation tasks)
|
|
- **ROUGE-1 F1**: 0.4355 (good semantic overlap)
|
|
- **ROUGE-2 F1**: 0.3457 (reasonable bigram matching)
|
|
- **ROUGE-L F1**: 0.3612 (good longest common subsequence)
|
|
|
|
---
|
|
|
|
## π§ͺ Use Cases
|
|
|
|
* **Automated kernel bug fixing**: Generate fixes for common kernel bugs
|
|
* **Code review assistance**: Help reviewers identify potential issues
|
|
* **Teaching/debugging kernel code**: Educational tool for kernel development
|
|
* **Research in automated program repair (APR)**: Academic research applications
|
|
* **CI/CD integration**: Automated testing and fixing in development pipelines
|
|
|
|
---
|
|
|
|
## π¬ Technical Highlights
|
|
|
|
### Memory & Speed Optimizations
|
|
|
|
* 4-bit quantization (NF4)
|
|
* Gradient checkpointing
|
|
* Mixed precision (bfloat16)
|
|
* Gradient accumulation
|
|
* LoRA parameter efficiency
|
|
|
|
### Training Efficiency
|
|
|
|
* **QLoRA**: Reduces memory usage by ~75%
|
|
* **4-bit quantization**: Further memory optimization
|
|
* **Gradient checkpointing**: Trades compute for memory
|
|
* **Mixed precision**: Faster training with maintained accuracy
|
|
|
|
---
|
|
|
|
## π οΈ Advanced Usage
|
|
|
|
### Custom Training
|
|
|
|
```bash
|
|
# Train with custom parameters
|
|
python train_codellama_qlora_linux_bugfix.py \
|
|
--learning_rate 1e-4 \
|
|
--num_epochs 5 \
|
|
--batch_size 32 \
|
|
--lora_r 32 \
|
|
--lora_alpha 16
|
|
```
|
|
|
|
### Evaluation on Custom Data
|
|
|
|
```bash
|
|
# Evaluate on your own test set
|
|
python evaluate_linux_bugfix_model.py \
|
|
--test_file your_test_data.jsonl \
|
|
--output_dir custom_eval_results
|
|
```
|
|
|
|
---
|
|
|
|
## π€ Contributing
|
|
|
|
1. Fork this repo
|
|
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
|
|
3. Commit your changes (`git commit -m 'Add amazing feature'`)
|
|
4. Push to the branch (`git push origin feature/amazing-feature`)
|
|
5. Open a Pull Request π
|
|
|
|
### Development Guidelines
|
|
|
|
- Follow PEP 8 style guidelines
|
|
- Add tests for new features
|
|
- Update documentation for API changes
|
|
- Ensure all tests pass before submitting PR
|
|
|
|
---
|
|
|
|
## π License
|
|
|
|
MIT License β see `LICENSE` file for details.
|
|
|
|
---
|
|
|
|
## π Acknowledgments
|
|
|
|
* **Meta** for CodeLLaMA base model
|
|
* **Hugging Face** for Transformers + PEFT libraries
|
|
* **The Linux kernel community** for open access to commit data
|
|
* **Microsoft** for introducing LoRA technique
|
|
* **University of Washington** for QLoRA research
|
|
|
|
---
|
|
|
|
## π References
|
|
|
|
* [CodeLLaMA (Meta, 2023)](https://arxiv.org/abs/2308.12950)
|
|
* [QLoRA (Dettmers et al., 2023)](https://arxiv.org/abs/2305.14314)
|
|
* [LoRA (Hu et al., 2021)](https://arxiv.org/abs/2106.09685)
|
|
* [Automated Program Repair: A Survey](https://ieeexplore.ieee.org/document/8449519)
|
|
|
|
---
|
|
|
|
## π Support
|
|
|
|
For questions, issues, or contributions:
|
|
- Open an issue on GitHub
|
|
- Check the project documentation
|
|
- Review the evaluation results in `evaluate/output/`
|
|
|
|
---
|
|
|
|
## π Version History
|
|
|
|
- **v1.0.0**: Initial release with QLoRA training
|
|
- **v1.1.0**: Added parallel dataset extraction
|
|
- **v1.2.0**: Improved evaluation metrics and documentation
|
|
|