|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dense |
|
- generated_from_trainer |
|
- dataset_size:78768 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
widget: |
|
- source_sentence: clockwork-cli {{path/to/directory}} |
|
sentences: |
|
- 'Execute the specified command synchronously on a node in the cluster:' |
|
- Copy all files with the ".txt" extension in the "/tmp" directory to the "/etc/opt/data/" |
|
directory. |
|
- 'Monitor Clockwork logs for a specific project:' |
|
- source_sentence: find -type f ! -perm -444 |
|
sentences: |
|
- Update the list of available slackbuilds and versions |
|
- Find all regular files in the current directory tree that are not readable by |
|
all |
|
- Find and show all files in the current directory tree that are smaller than 500 |
|
kB |
|
- source_sentence: find /usr/ports/ -name work -type d -print -exec rm -rf {} \; |
|
sentences: |
|
- 'Open specific files/directories:' |
|
- '[l]isten on a specified [p]ort and print any data received:' |
|
- Find directories named 'work' under '/usr/ports/' directory tree and remove them |
|
- source_sentence: $ tar xvfJ filename.tar.xz |
|
sentences: |
|
- Mount "device_name" on "mount_point" |
|
- 'Prompt for an OTP secret value specifying issuer and account (at least one must |
|
be specified) and append to existing pass file:' |
|
- extract "filename.tar.xz" with verbose output |
|
- source_sentence: plocate */filename |
|
sentences: |
|
- download contents from "https://www.npmjs.com/install.sh" and execute |
|
- Look for a file by its exact filename (a pattern containing no globbing characters |
|
is interpreted as `*pattern*`) |
|
- 'View documentation for the current command:' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** [Mitchins/NL-SHELL-MULTI](https://huggingface.co/datasets/Mitchins/NL-SHELL-MULTI) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'}) |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'plocate */filename', |
|
'Look for a file by its exact filename (a pattern containing no globbing characters is interpreted as `*pattern*`)', |
|
'View documentation for the current command:', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities) |
|
# tensor([[ 1.0000, 0.5111, -0.1450], |
|
# [ 0.5111, 1.0000, 0.0595], |
|
# [-0.1450, 0.0595, 1.0000]]) |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
## Evaluation and Comparison |
|
|
|
To demonstrate the effectiveness of fine-tuning, we compare the cosine similarity scores of the fine-tuned model against the stock `sentence-transformers/all-MiniLM-L6-v2` model on a set of example command-description pairs. Higher positive pair similarity and lower negative pair similarity indicate better performance. |
|
|
|
| Command | Description | Fine-tuned Model (Positive Pair Similarity) | Stock MiniLM (Positive Pair Similarity) | Fine-tuned Model (Avg. Negative Pair Similarity) | Stock MiniLM (Avg. Negative Pair Similarity) | |
|
|---|---|---|---|---|---| |
|
| `ls -la` | List all files and directories, including hidden ones, in long format. | 0.5747 | 0.1288 | -0.086 | 0.052 | |
|
| `grep -r "TODO" ./src` | Recursively search for the string 'TODO' in all files within the './src' directory. | 0.7457 | 0.7489 | 0.019 | 0.119 | |
|
| `find . -name "*.py" -mtime -7` | Find all Python files modified in the last 7 days in the current directory and its subdirectories. | 0.8176 | 0.6050 | 0.050 | 0.129 | |
|
| `ps aux (python)` | List all running processes and filter for those containing the word 'python'. | 0.8011 | 0.6616 | 0.009 | 0.099 | |
|
| `tar -czvf archive.tar.gz /path/to/directory` | Create a gzipped tar archive named 'archive.tar.gz' from the specified directory. | 0.7239 | 0.6875 | -0.004 | 0.049 | |
|
| `docker run -it --rm -p 8080:80 nginx:latest` | Run a Docker container from the 'nginx:latest' image, mapping port 8080 on the host to port 80 in the container, in interactive mode, and remove it when done. | 0.8018 | 0.7462 | -0.006 | 0.059 | |
|
| `git checkout -b new-feature` | Create a new Git branch named 'new-feature' and switch to it. | 0.6108 | 0.6355 | -0.059 | 0.039 | |
|
| `curl -X POST -H "Content-Type: application/json" -d '{"key": "value"}' https://api.example.com/submit` | Send a POST request with JSON data to a specified URL using curl. | 0.6739 | 0.7476 | -0.004 | 0.019 | |
|
| `chmod 755 script.sh` | Change the permissions of 'script.sh' to allow the owner to read, write, and execute, and others to read and execute. | 0.7668 | 0.6824 | -0.019 | 0.059 | |
|
| `df -h` | Display disk space usage of file systems in a human-readable format. | 0.7445 | 0.2452 | -0.060 | 0.029 | |
|
| `echo "Hello, World!" > output.txt` | Write the string 'Hello, World!' to a file named 'output.txt', overwriting it if it exists. | 0.7569 | 0.8295 | -0.029 | 0.079 | |
|
| `sudo apt-get update && sudo apt-get upgrade -y` | Update the package lists and then upgrade all installed packages on a Debian-based system without prompting for confirmation. | 0.6937 | 0.4985 | 0.010 | 0.069 | |
|
|
|
**Key Observations:** |
|
|
|
* **Improved Positive Pair Similarity (Overall):** For most command-description pairs, the fine-tuned model shows a higher positive pair similarity compared to the stock MiniLM model. |
|
* **Lower Negative Pair Similarity (Overall):** The fine-tuned model consistently produces lower (often negative) average cosine similarities for negative pairs, indicating better discrimination. |
|
* **Specialization:** The fine-tuned model demonstrates clear specialization for the domain of terminal commands and their descriptions, adapting its embedding space to better capture the nuances of this specific domain. |
|
|
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 78,768 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 21.83 tokens</li><li>max: 121 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 18.41 tokens</li><li>max: 103 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:-------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------| |
|
| <code>wajig daily-upgrade</code> | <code>Perform an update and then a distupgrade:</code> | |
|
| <code>readlink -f /path/here/..</code> | <code>Print canonical filename of "/path/here/.."</code> | |
|
| <code>rustup doc {{std::fs|usize|fn|...}}</code> | <code>Open the documentation for a specific topic (a module in the standard library, a type, a keyword, etc.):</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 5 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `hub_revision`: None |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `liger_kernel_config`: None |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
- `router_mapping`: {} |
|
- `learning_rate_mapping`: {} |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:-----:|:-------------:| |
|
| 0.1016 | 500 | 0.391 | |
|
| 0.2031 | 1000 | 0.2648 | |
|
| 0.3047 | 1500 | 0.2107 | |
|
| 0.4063 | 2000 | 0.1675 | |
|
| 0.5078 | 2500 | 0.1571 | |
|
| 0.6094 | 3000 | 0.1467 | |
|
| 0.7109 | 3500 | 0.1284 | |
|
| 0.8125 | 4000 | 0.1272 | |
|
| 0.9141 | 4500 | 0.1156 | |
|
| 1.0156 | 5000 | 0.0983 | |
|
| 1.1172 | 5500 | 0.074 | |
|
| 1.2188 | 6000 | 0.0799 | |
|
| 1.3203 | 6500 | 0.0752 | |
|
| 1.4219 | 7000 | 0.0686 | |
|
| 1.5235 | 7500 | 0.0716 | |
|
| 1.6250 | 8000 | 0.0672 | |
|
| 1.7266 | 8500 | 0.0652 | |
|
| 1.8282 | 9000 | 0.0563 | |
|
| 1.9297 | 9500 | 0.0527 | |
|
| 2.0313 | 10000 | 0.0519 | |
|
| 2.1328 | 10500 | 0.0461 | |
|
| 2.2344 | 11000 | 0.0405 | |
|
| 2.3360 | 11500 | 0.0447 | |
|
| 2.4375 | 12000 | 0.0454 | |
|
| 2.5391 | 12500 | 0.0409 | |
|
| 2.6407 | 13000 | 0.0408 | |
|
| 2.7422 | 13500 | 0.0416 | |
|
| 2.8438 | 14000 | 0.0397 | |
|
| 2.9454 | 14500 | 0.0365 | |
|
| 3.0469 | 15000 | 0.0372 | |
|
| 3.1485 | 15500 | 0.0313 | |
|
| 3.2501 | 16000 | 0.0317 | |
|
| 3.3516 | 16500 | 0.0282 | |
|
| 3.4532 | 17000 | 0.0293 | |
|
| 3.5547 | 17500 | 0.0294 | |
|
| 3.6563 | 18000 | 0.0278 | |
|
| 3.7579 | 18500 | 0.0267 | |
|
| 3.8594 | 19000 | 0.0281 | |
|
| 3.9610 | 19500 | 0.0269 | |
|
| 4.0626 | 20000 | 0.0264 | |
|
| 4.1641 | 20500 | 0.0257 | |
|
| 4.2657 | 21000 | 0.0272 | |
|
| 4.3673 | 21500 | 0.0232 | |
|
| 4.4688 | 22000 | 0.025 | |
|
| 4.5704 | 22500 | 0.0258 | |
|
| 4.6719 | 23000 | 0.026 | |
|
| 4.7735 | 23500 | 0.0257 | |
|
| 4.8751 | 24000 | 0.0244 | |
|
| 4.9766 | 24500 | 0.0232 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.18 |
|
- Sentence Transformers: 5.0.0 |
|
- Transformers: 4.53.1 |
|
- PyTorch: 2.7.0+cu128 |
|
- Accelerate: 1.8.1 |
|
- Datasets: 3.6.0 |
|
- Tokenizers: 0.21.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |