Qubitium's picture
Update README.md
1daef8d verified
|
raw
history blame
1.59 kB
---
license: apache-2.0
base_model:
- meta-llama/Llama-3.1-8B-Instruct
tags:
- gptqmodel
- gptq
- v2
---
## Simple Llama 3.1 8B-Instruct model quantized using GPTQ v2 with C2/en 256 rows of calibration data
This is not a production ready quant model but one used to evaluate GPTQ v1 vs GPTQ v2 for post-quant comparison.
GPTQ v1 is hosted at: https://huggingface.co/ModelCloud/GPTQ-v1-Llama-3.1-8B-Instruct
## Eval Script using GPTQModel (main branch) and Marlin kernel + lm-eval (main branch)
```py
# eval
from lm_eval.tasks import TaskManager
from lm_eval.utils import make_table
with tempfile.TemporaryDirectory() as tmp_dir:
results = GPTQModel.eval(
QUANT_SAVE_PATH,
tasks=[EVAL.LM_EVAL.ARC_CHALLENGE, EVAL.LM_EVAL.GSM8K_PLATINUM_COT],
apply_chat_template=True,
random_seed=898,
output_path= tmp_dir,
)
print(make_table(results))
if "groups" in results:
print(make_table(results, "groups"))
```
Full quantization and eval reproduction code: https://github.com/ModelCloud/GPTQModel/issues/1545#issuecomment-2811997133
| Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr|
|------------------|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|arc_challenge| 1|none | 0|acc |↑ |0.5034|± |0.0146|
| | |none | 0|acc_norm|↑ |0.5068|± |0.0146|
|gsm8k_platinum_cot| 3|flexible-extract| 8|exact_match|↑ |0.7601|± |0.0123|
| | |strict-match | 8|exact_match|↑ |0.5211|± |0.0144|