File size: 41,648 Bytes
49124a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 |
---
license: other
license_name: exaone
license_link: LICENSE
language:
- en
- ko
- es
tags:
- lg-ai
- exaone
- exaone-4.0
pipeline_tag: text-generation
library_name: transformers
---
# <span style="color: #7FFF7F;">EXAONE-4.0-32B GGUF Models</span>
## <span style="color: #7F7FFF;">Model Generation Details</span>
This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`bf9087f5`](https://github.com/ggerganov/llama.cpp/commit/bf9087f59aab940cf312b85a67067ce33d9e365a).
---
## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
π [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
While this does increase model file size, it significantly improves precision for a given quantization level.
### **I'd love your feedbackβhave you tried this? How does it perform for you?**
---
<a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
Click here to get info on choosing the right GGUF model format
</a>
---
<!--Begin Original Model Card-->
<p align="center">
<img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
π License Updated! We are pleased to announce our more flexible licensing terms π€
<br>βοΈ Try on <a href="https://friendli.ai/suite/~/serverless-endpoints/LGAI-EXAONE/EXAONE-4.0-32B/overview">FriendliAI</a>
<br>
# EXAONE-4.0-32B
## Introduction
We introduce **EXAONE 4.0**, which integrates a **Non-reasoning mode** and **Reasoning mode** to achieve both the excellent usability of [EXAONE 3.5](https://github.com/LG-AI-EXAONE/EXAONE-3.5) and the advanced reasoning abilities of [EXAONE Deep](https://github.com/LG-AI-EXAONE/EXAONE-Deep). To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended
to support Spanish in addition to English and Korean.
The EXAONE 4.0 model series consists of two sizes: a mid-size **32B** model optimized for high performance, and a small-size **1.2B** model designed for on-device applications.
In the EXAONE 4.0 architecture, we apply new architectural changes compared to previous EXAONE models as below:
1. **Hybrid Attention**: For the 32B model, we adopt hybrid attention scheme, which combines *Local attention (sliding window attention)* with *Global attention (full attention)* in a 3:1 ratio. We do not use RoPE (Rotary Positional Embedding) for global attention for better global context understanding.
2. **QK-Reorder-Norm**: We reorder the LayerNorm position from the traditional Pre-LN scheme by applying LayerNorm directly to the attention and MLP outputs, and we add RMS normalization right after the Q and K projection. It helps yield better performance on downstream tasks despite consuming more computation.
For more details, please refer to our [technical report](https://arxiv.org/abs/2507.11407), [HuggingFace paper](https://huggingface.co/papers/2507.11407), [blog](https://www.lgresearch.ai/blog/view?seq=576), and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-4.0).
### Model Configuration
- Number of Parameters (without embeddings): 30.95B
- Number of Layers: 64
- Number of Attention Heads: GQA with 40-heads and 8-KV heads
- Vocab Size: 102,400
- Context Length: 131,072 tokens
## Quickstart
You should install the transformers library forked from the original, available in our [PR](https://github.com/huggingface/transformers/pull/39129).
Once this PR is merged and released, we will update this section.
You can install the latest version of transformers with support for EXAONE 4.0 by following the command:
```bash
pip install git+https://github.com/lgai-exaone/transformers@add-exaone4
```
### Non-reasoning mode
For general use, you can use the EXAONE 4.0 models with the following example:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "LGAI-EXAONE/EXAONE-4.0-32B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="bfloat16",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# choose your prompt
prompt = "Explain how wonderful you are"
prompt = "Explica lo increΓble que eres"
prompt = "λκ° μΌλ§λ λλ¨νμ§ μ€λͺ
ν΄ λ΄"
messages = [
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
output = model.generate(
input_ids.to(model.device),
max_new_tokens=128,
do_sample=False,
)
print(tokenizer.decode(output[0]))
```
### Reasoning mode
The EXAONE 4.0 models have reasoning capabilities for handling complex problems. You can activate reasoning mode by using the `enable_thinking=True` argument with the tokenizer, which opens a reasoning block that starts with `<think>` tag without closing it.
```python
messages = [
{"role": "user", "content": "Which one is bigger, 3.12 vs 3.9?"}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
enable_thinking=True,
)
output = model.generate(
input_ids.to(model.device),
max_new_tokens=128,
do_sample=True,
temperature=0.6,
top_p=0.95
)
print(tokenizer.decode(output[0]))
```
> [!IMPORTANT]
> The model generation with reasoning mode can be affected sensitively by sampling parameters, so please refer to the [Usage Guideline](#usage-guideline) for better quality.
### Agentic tool use
The EXAONE 4.0 models can be used as agents with their tool calling capabilities. You can provide tool schemas to the model for effective tool calling.
```python
import random
def roll_dice(max_num: int):
return random.randint(1, max_num)
tools = [
{
"type": "function",
"function": {
"name": "roll_dice",
"description": "Roll a dice with the number 1 to N. User can select the number N.",
"parameters": {
"type": "object",
"required": ["max_num"],
"properties": {
"max_num": {
"type": "int",
"description": "Max number of the dice"
}
}
}
}
}
]
messages = [
{"role": "user", "content": "Roll D6 dice twice!"}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
tools=tools,
)
output = model.generate(
input_ids.to(model.device),
max_new_tokens=1024,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(tokenizer.decode(output[0]))
```
## Deployment
### TensorRT-LLM
TensorRT-LLM officially supports EXAONE 4.0 models in the latest commits. Before it is released, you need to clone the TensorRT-LLM repository to build from source.
```bash
git clone https://github.com/NVIDIA/TensorRT-LLM.git
```
After cloning the repository, you need to build the source for installation. Please refer to [the official documentation](https://nvidia.github.io/TensorRT-LLM/installation/build-from-source-linux.html) for a guide to build the TensorRT-LLM environment.
You can run the TensorRT-LLM server by following steps:
1. Write extra configuration YAML file
```yaml
# extra_llm_api_config.yaml
kv_cache_config:
enable_block_reuse: false
```
2. Run server with the configuration
```bash
trtllm-serve serve [MODEL_PATH] --backend pytorch --extra_llm_api_options extra_llm_api_config.yaml
```
For more details, please refer to [the documentation](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/models/core/exaone) of EXAONE from TensorRT-LLM.
> [!NOTE]
> Other inference engines including `vllm` and `sglang` don't support the EXAONE 4.0 officially now. We will update as soon as these libraries are updated.
## Performance
The following tables show the evaluation results of each model, with reasoning and non-reasoning mode. The evaluation details can be found in the [technical report](https://arxiv.org/abs/2507.11407).
- β
denotes the model has a hybrid reasoning capability, evaluated by selecting reasoning / non-reasoning on the purpose.
- To assess Korean **practical** and **professional** knowledge, we adopt both the [KMMLU-Redux](https://huggingface.co/datasets/LGAI-EXAONE/KMMLU-Redux) and [KMMLU-Pro](https://huggingface.co/datasets/LGAI-EXAONE/KMMLU-Pro) benchmarks. Both datasets are publicly released!
### 32B Reasoning Mode
<table>
<tr>
<th> </th>
<th>EXAONE 4.0 32B </th>
<th>Phi 4 reasoning-plus</th>
<th>Magistral Small-2506</th>
<th>Qwen 3 32B </th>
<th>Qwen 3 235B </th>
<th>DeepSeek R1-0528</th>
</tr>
<tr>
<td align="center">Model Size</td>
<td align="center">32.0B</td>
<td align="center">14.7B</td>
<td align="center">23.6B</td>
<td align="center">32.8B</td>
<td align="center">235B</td>
<td align="center">671B</td>
</tr>
<tr>
<td align="center">Hybrid Reasoning</td>
<td align="center">β
</td>
<td align="center"> </td>
<td align="center"> </td>
<td align="center">β
</td>
<td align="center">β
</td>
<td align="center"> </td>
</tr>
<tr>
<td align="center" colspan='7'><i>World Knowledge</i></td>
</tr>
<tr>
<td >MMLU-Redux</td>
<td align="center">92.3</td>
<td align="center">90.8</td>
<td align="center">86.8</td>
<td align="center">90.9</td>
<td align="center">92.7</td>
<td align="center">93.4</td>
</tr>
<tr>
<td >MMLU-Pro</td>
<td align="center">81.8</td>
<td align="center">76.0</td>
<td align="center">73.4</td>
<td align="center">80.0</td>
<td align="center">83.0</td>
<td align="center">85.0</td>
</tr>
<tr>
<td >GPQA-Diamond</td>
<td align="center">75.4</td>
<td align="center">68.9</td>
<td align="center">68.2</td>
<td align="center">68.4</td>
<td align="center">71.1</td>
<td align="center">81.0</td>
</tr>
<tr>
<td align="center" colspan='7'><i>Math/Coding</i></td>
</tr>
<tr>
<td >AIME 2025</td>
<td align="center">85.3</td>
<td align="center">78.0</td>
<td align="center">62.8</td>
<td align="center">72.9</td>
<td align="center">81.5</td>
<td align="center">87.5</td>
</tr>
<tr>
<td >HMMT Feb 2025</td>
<td align="center">72.9</td>
<td align="center">53.6</td>
<td align="center">43.5</td>
<td align="center">50.4</td>
<td align="center">62.5</td>
<td align="center">79.4</td>
</tr>
<tr>
<td >LiveCodeBench v5</td>
<td align="center">72.6</td>
<td align="center">51.7</td>
<td align="center">55.8</td>
<td align="center">65.7</td>
<td align="center">70.7</td>
<td align="center">75.2</td>
</tr>
<tr>
<td >LiveCodeBench v6</td>
<td align="center">66.7</td>
<td align="center">47.1</td>
<td align="center">47.4</td>
<td align="center">60.1</td>
<td align="center">58.9</td>
<td align="center">70.3</td>
</tr>
<tr>
<td align="center" colspan='7'><i>Instruction Following</i></td>
</tr>
<tr>
<td >IFEval</td>
<td align="center">83.7</td>
<td align="center">84.9</td>
<td align="center">37.9</td>
<td align="center">85.0</td>
<td align="center">83.4</td>
<td align="center">80.8</td>
</tr>
<tr>
<td >Multi-IF (EN)</td>
<td align="center">73.5</td>
<td align="center">56.1</td>
<td align="center">27.4</td>
<td align="center">73.4</td>
<td align="center">73.4</td>
<td align="center">72.0</td>
</tr>
<tr>
<td align="center" colspan='7'><i>Agentic Tool Use</i></td>
</tr>
<tr>
<td >BFCL-v3</td>
<td align="center">63.9</td>
<td align="center">N/A</td>
<td align="center">40.4</td>
<td align="center">70.3</td>
<td align="center">70.8</td>
<td align="center">64.7</td>
</tr>
<tr>
<td >Tau-bench (Airline)</td>
<td align="center">51.5</td>
<td align="center">N/A</td>
<td align="center">38.5</td>
<td align="center">34.5</td>
<td align="center">37.5</td>
<td align="center">53.5</td>
</tr>
<tr>
<td >Tau-bench (Retail)</td>
<td align="center">62.8</td>
<td align="center">N/A</td>
<td align="center">10.2</td>
<td align="center">55.2</td>
<td align="center">58.3</td>
<td align="center">63.9</td>
</tr>
<tr>
<td align="center" colspan='7'><i>Multilinguality</i></td>
</tr>
<tr>
<td >KMMLU-Pro</td>
<td align="center">67.7</td>
<td align="center">55.8</td>
<td align="center">51.5</td>
<td align="center">61.4</td>
<td align="center">68.1</td>
<td align="center">71.7</td>
</tr>
<tr>
<td >KMMLU-Redux</td>
<td align="center">72.7</td>
<td align="center">62.7</td>
<td align="center">54.6</td>
<td align="center">67.5</td>
<td align="center">74.5</td>
<td align="center">77.0</td>
</tr>
<tr>
<td >KSM</td>
<td align="center">87.6</td>
<td align="center">79.8</td>
<td align="center">71.9</td>
<td align="center">82.8</td>
<td align="center">86.2</td>
<td align="center">86.7</td>
</tr>
<tr>
<td >MMMLU (ES)</td>
<td align="center">85.6</td>
<td align="center">84.3</td>
<td align="center">68.9</td>
<td align="center">82.8</td>
<td align="center">86.7</td>
<td align="center">88.2</td>
</tr>
<tr>
<td >MATH500 (ES)</td>
<td align="center">95.8</td>
<td align="center">94.2</td>
<td align="center">83.5</td>
<td align="center">94.3</td>
<td align="center">95.1</td>
<td align="center">96.0</td>
</tr>
</table>
### 32B Non-Reasoning Mode
<table>
<tr>
<th> </th>
<th>EXAONE 4.0 32B </th>
<th>Phi 4</th>
<th>Mistral-Small-2506</th>
<th>Gemma 3 27B</th>
<th>Qwen3 32B </th>
<th>Qwen3 235B </th>
<th>Llama-4-Maverick</th>
<th>DeepSeek V3-0324</th>
</tr>
<tr>
<td align="center">Model Size</td>
<td align="center">32.0B</td>
<td align="center">14.7B</td>
<td align="center">24.0B</td>
<td align="center">27.4B</td>
<td align="center">32.8B</td>
<td align="center">235B</td>
<td align="center">402B</td>
<td align="center">671B</td>
</tr>
<tr>
<td align="center">Hybrid Reasoning</td>
<td align="center">β
</td>
<td align="center"> </td>
<td align="center"> </td>
<td align="center"> </td>
<td align="center">β
</td>
<td align="center">β
</td>
<td align="center"> </td>
<td align="center"> </td>
</tr>
<tr>
<td align="center" colspan='9'><i>World Knowledge</i></td>
</tr>
<tr>
<td >MMLU-Redux</td>
<td align="center">89.8</td>
<td align="center">88.3</td>
<td align="center">85.9</td>
<td align="center">85.0</td>
<td align="center">85.7</td>
<td align="center">89.2</td>
<td align="center">92.3</td>
<td align="center">92.3</td>
</tr>
<tr>
<td >MMLU-Pro</td>
<td align="center">77.6</td>
<td align="center">70.4</td>
<td align="center">69.1</td>
<td align="center">67.5</td>
<td align="center">74.4</td>
<td align="center">77.4</td>
<td align="center">80.5</td>
<td align="center">81.2</td>
</tr>
<tr>
<td >GPQA-Diamond</td>
<td align="center">63.7</td>
<td align="center">56.1</td>
<td align="center">46.1</td>
<td align="center">42.4</td>
<td align="center">54.6</td>
<td align="center">62.9</td>
<td align="center">69.8</td>
<td align="center">68.4</td>
</tr>
<tr>
<td align="center" colspan='9'><i>Math/Coding</i></td>
</tr>
<tr>
<td >AIME 2025</td>
<td align="center">35.9</td>
<td align="center">17.8</td>
<td align="center">30.2</td>
<td align="center">23.8</td>
<td align="center">20.2</td>
<td align="center">24.7</td>
<td align="center">18.0</td>
<td align="center">50.0</td>
</tr>
<tr>
<td >HMMT Feb 2025</td>
<td align="center">21.8</td>
<td align="center">4.0</td>
<td align="center">16.9</td>
<td align="center">10.3</td>
<td align="center">9.8</td>
<td align="center">11.9</td>
<td align="center">7.3</td>
<td align="center">29.2</td>
</tr>
<tr>
<td >LiveCodeBench v5</td>
<td align="center">43.3</td>
<td align="center">24.6</td>
<td align="center">25.8</td>
<td align="center">27.5</td>
<td align="center">31.3</td>
<td align="center">35.3</td>
<td align="center">43.4</td>
<td align="center">46.7</td>
</tr>
<tr>
<td >LiveCodeBench v6</td>
<td align="center">43.1</td>
<td align="center">27.4</td>
<td align="center">26.9</td>
<td align="center">29.7</td>
<td align="center">28.0</td>
<td align="center">31.4</td>
<td align="center">32.7</td>
<td align="center">44.0</td>
</tr>
<tr>
<td align="center" colspan='9'><i>Instruction Following</i></td>
</tr>
<tr>
<td >IFEval</td>
<td align="center">84.8</td>
<td align="center">63.0</td>
<td align="center">77.8</td>
<td align="center">82.6</td>
<td align="center">83.2</td>
<td align="center">83.2</td>
<td align="center">85.4</td>
<td align="center">81.2</td>
</tr>
<tr>
<td >Multi-IF (EN)</td>
<td align="center">71.6</td>
<td align="center">47.7</td>
<td align="center">63.2</td>
<td align="center">72.1</td>
<td align="center">71.9</td>
<td align="center">72.5</td>
<td align="center">77.9</td>
<td align="center">68.3</td>
</tr>
<tr>
<td align="center" colspan='9'><i>Long Context</i></td>
</tr>
<tr>
<td >HELMET</td>
<td align="center">58.3</td>
<td align="center">N/A</td>
<td align="center">61.9</td>
<td align="center">58.3</td>
<td align="center">54.5</td>
<td align="center">63.3</td>
<td align="center">13.7</td>
<td align="center">N/A</td>
</tr>
<tr>
<td >RULER</td>
<td align="center">88.2</td>
<td align="center">N/A</td>
<td align="center">71.8</td>
<td align="center">66.0</td>
<td align="center">85.6</td>
<td align="center">90.6</td>
<td align="center">2.9</td>
<td align="center">N/A</td>
</tr>
<tr>
<td >LongBench v1</td>
<td align="center">48.1</td>
<td align="center">N/A</td>
<td align="center">51.5</td>
<td align="center">51.5</td>
<td align="center">44.2</td>
<td align="center">45.3</td>
<td align="center">34.7</td>
<td align="center">N/A</td>
</tr>
<tr>
<td align="center" colspan='9'><i>Agentic Tool Use</i></td>
</tr>
<tr>
<td >BFCL-v3</td>
<td align="center">65.2</td>
<td align="center">N/A</td>
<td align="center">57.7</td>
<td align="center">N/A</td>
<td align="center">63.0</td>
<td align="center">68.0</td>
<td align="center">52.9</td>
<td align="center">63.8</td>
</tr>
<tr>
<td >Tau-Bench (Airline)</td>
<td align="center">25.5</td>
<td align="center">N/A</td>
<td align="center">36.1</td>
<td align="center">N/A</td>
<td align="center">16.0</td>
<td align="center">27.0</td>
<td align="center">38.0</td>
<td align="center">40.5</td>
</tr>
<tr>
<td >Tau-Bench (Retail)</td>
<td align="center">55.9</td>
<td align="center">N/A</td>
<td align="center">35.5</td>
<td align="center">N/A</td>
<td align="center">47.6</td>
<td align="center">56.5</td>
<td align="center">6.5</td>
<td align="center">68.5</td>
</tr>
<tr>
<td align="center" colspan='9'><i>Multilinguality</i></td>
</tr>
<tr>
<td >KMMLU-Pro</td>
<td align="center">60.0</td>
<td align="center">44.8</td>
<td align="center">51.0</td>
<td align="center">50.7</td>
<td align="center">58.3</td>
<td align="center">64.4</td>
<td align="center">68.8</td>
<td align="center">67.3</td>
</tr>
<tr>
<td >KMMLU-Redux</td>
<td align="center">64.8</td>
<td align="center">50.1</td>
<td align="center">53.6</td>
<td align="center">53.3</td>
<td align="center">64.4</td>
<td align="center">71.7</td>
<td align="center">76.9</td>
<td align="center">72.2</td>
</tr>
<tr>
<td >KSM</td>
<td align="center">59.8</td>
<td align="center">29.1</td>
<td align="center">35.5</td>
<td align="center">36.1</td>
<td align="center">41.3</td>
<td align="center">46.6</td>
<td align="center">40.6</td>
<td align="center">63.5</td>
</tr>
<tr>
<td >Ko-LongBench</td>
<td align="center">76.9</td>
<td align="center">N/A</td>
<td align="center">55.4</td>
<td align="center">72.0</td>
<td align="center">73.9</td>
<td align="center">74.6</td>
<td align="center">65.6</td>
<td align="center">N/A</td>
</tr>
<tr>
<td >MMMLU (ES)</td>
<td align="center">80.6</td>
<td align="center">81.2</td>
<td align="center">78.4</td>
<td align="center">78.7</td>
<td align="center">82.1</td>
<td align="center">83.7</td>
<td align="center">86.9</td>
<td align="center">86.7</td>
</tr>
<tr>
<td >MATH500 (ES)</td>
<td align="center">87.3</td>
<td align="center">78.2</td>
<td align="center">83.4</td>
<td align="center">86.8</td>
<td align="center">84.7</td>
<td align="center">87.2</td>
<td align="center">78.7</td>
<td align="center">89.2</td>
</tr>
<tr>
<td >WMT24++ (ES)</td>
<td align="center">90.7</td>
<td align="center">89.3</td>
<td align="center">92.2</td>
<td align="center">93.1</td>
<td align="center">91.4</td>
<td align="center">92.9</td>
<td align="center">92.7</td>
<td align="center">94.3 </td>
</tr>
</table>
### 1.2B Reasoning Mode
<table>
<tr>
<th> </th>
<th>EXAONE 4.0 1.2B </th>
<th>EXAONE Deep 2.4B</th>
<th>Qwen 3 0.6B </th>
<th>Qwen 3 1.7B </th>
<th>SmolLM3 3B </th>
</tr>
<tr>
<td align="center">Model Size</td>
<td align="center">1.28B</td>
<td align="center">2.41B</td>
<td align="center">596M</td>
<td align="center">1.72B</td>
<td align="center">3.08B</td>
</tr>
<tr>
<td align="center">Hybrid Reasoning</td>
<td align="center">β
</td>
<td align="center"> </td>
<td align="center">β
</td>
<td align="center">β
</td>
<td align="center">β
</td>
</tr>
<tr>
<td align="center" colspan='6'><i>World Knowledge</i></td>
</tr>
<tr>
<td >MMLU-Redux</td>
<td align="center">71.5</td>
<td align="center">68.9</td>
<td align="center">55.6</td>
<td align="center">73.9</td>
<td align="center">74.8</td>
</tr>
<tr>
<td >MMLU-Pro</td>
<td align="center">59.3</td>
<td align="center">56.4</td>
<td align="center">38.3</td>
<td align="center">57.7</td>
<td align="center">57.8</td>
</tr>
<tr>
<td >GPQA-Diamond</td>
<td align="center">52.0</td>
<td align="center">54.3</td>
<td align="center">27.9</td>
<td align="center">40.1</td>
<td align="center">41.7</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Math/Coding</i></td>
</tr>
<tr>
<td >AIME 2025</td>
<td align="center">45.2</td>
<td align="center">47.9</td>
<td align="center">15.1</td>
<td align="center">36.8</td>
<td align="center">36.7</td>
</tr>
<tr>
<td >HMMT Feb 2025</td>
<td align="center">34.0</td>
<td align="center">27.3</td>
<td align="center">7.0</td>
<td align="center">21.8</td>
<td align="center">26.0</td>
</tr>
<tr>
<td >LiveCodeBench v5</td>
<td align="center">44.6</td>
<td align="center">47.2</td>
<td align="center">12.3</td>
<td align="center">33.2</td>
<td align="center">27.6</td>
</tr>
<tr>
<td >LiveCodeBench v6</td>
<td align="center">45.3</td>
<td align="center">43.1</td>
<td align="center">16.4</td>
<td align="center">29.9</td>
<td align="center">29.1</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Instruction Following</i></td>
</tr>
<tr>
<td >IFEval</td>
<td align="center">67.8</td>
<td align="center">71.0</td>
<td align="center">59.2</td>
<td align="center">72.5</td>
<td align="center">71.2</td>
</tr>
<tr>
<td >Multi-IF (EN)</td>
<td align="center">53.9</td>
<td align="center">54.5</td>
<td align="center">37.5</td>
<td align="center">53.5</td>
<td align="center">47.5</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Agentic Tool Use</i></td>
</tr>
<tr>
<td >BFCL-v3</td>
<td align="center">52.9</td>
<td align="center">N/A</td>
<td align="center">46.4</td>
<td align="center">56.6</td>
<td align="center">37.1</td>
</tr>
<tr>
<td >Tau-Bench (Airline)</td>
<td align="center">20.5</td>
<td align="center">N/A</td>
<td align="center">22.0</td>
<td align="center">31.0</td>
<td align="center">37.0</td>
</tr>
<tr>
<td >Tau-Bench (Retail)</td>
<td align="center">28.1</td>
<td align="center">N/A</td>
<td align="center">3.3</td>
<td align="center">6.5</td>
<td align="center">5.4</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Multilinguality</i></td>
</tr>
<tr>
<td >KMMLU-Pro</td>
<td align="center">42.7</td>
<td align="center">24.6</td>
<td align="center">21.6</td>
<td align="center">38.3</td>
<td align="center">30.5</td>
</tr>
<tr>
<td >KMMLU-Redux</td>
<td align="center">46.9</td>
<td align="center">25.0</td>
<td align="center">24.5</td>
<td align="center">38.0</td>
<td align="center">33.7</td>
</tr>
<tr>
<td >KSM</td>
<td align="center">60.6</td>
<td align="center">60.9</td>
<td align="center">22.8</td>
<td align="center">52.9</td>
<td align="center">49.7</td>
</tr>
<tr>
<td >MMMLU (ES)</td>
<td align="center">62.4</td>
<td align="center">51.4</td>
<td align="center">48.8</td>
<td align="center">64.5</td>
<td align="center">64.7</td>
</tr>
<tr>
<td >MATH500 (ES)</td>
<td align="center">88.8</td>
<td align="center">84.5</td>
<td align="center">70.6</td>
<td align="center">87.9</td>
<td align="center">87.5 </td>
</tr>
</table>
### 1.2B Non-Reasoning Mode
<table>
<tr>
<th> </th>
<th>EXAONE 4.0 1.2B </th>
<th>Qwen 3 0.6B </th>
<th>Gemma 3 1B</th>
<th>Qwen 3 1.7B </th>
<th>SmolLM3 3B </th>
</tr>
<tr>
<td align="center">Model Size</td>
<td align="center">1.28B</td>
<td align="center">596M</td>
<td align="center">1.00B</td>
<td align="center">1.72B</td>
<td align="center">3.08B</td>
</tr>
<tr>
<td align="center">Hybrid Reasoning</td>
<td align="center">β
</td>
<td align="center">β
</td>
<td align="center"> </td>
<td align="center">β
</td>
<td align="center">β
</td>
</tr>
<tr>
<td align="center" colspan='6'><i>World Knowledge</i></td>
</tr>
<tr>
<td >MMLU-Redux</td>
<td align="center">66.9</td>
<td align="center">44.6</td>
<td align="center">40.9</td>
<td align="center">63.4</td>
<td align="center">65.0</td>
</tr>
<tr>
<td >MMLU-Pro</td>
<td align="center">52.0</td>
<td align="center">26.6</td>
<td align="center">14.7</td>
<td align="center">43.7</td>
<td align="center">43.6</td>
</tr>
<tr>
<td >GPQA-Diamond</td>
<td align="center">40.1</td>
<td align="center">22.9</td>
<td align="center">19.2</td>
<td align="center">28.6</td>
<td align="center">35.7</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Math/Coding</i></td>
</tr>
<tr>
<td >AIME 2025</td>
<td align="center">23.5</td>
<td align="center">2.6</td>
<td align="center">2.1</td>
<td align="center">9.8</td>
<td align="center">9.3</td>
</tr>
<tr>
<td >HMMT Feb 2025</td>
<td align="center">13.0</td>
<td align="center">1.0</td>
<td align="center">1.5</td>
<td align="center">5.1</td>
<td align="center">4.7</td>
</tr>
<tr>
<td >LiveCodeBench v5</td>
<td align="center">26.4</td>
<td align="center">3.6</td>
<td align="center">1.8</td>
<td align="center">11.6</td>
<td align="center">11.4</td>
</tr>
<tr>
<td >LiveCodeBench v6</td>
<td align="center">30.1</td>
<td align="center">6.9</td>
<td align="center">2.3</td>
<td align="center">16.6</td>
<td align="center">20.6</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Instruction Following</i></td>
</tr>
<tr>
<td >IFEval</td>
<td align="center">74.7</td>
<td align="center">54.5</td>
<td align="center">80.2</td>
<td align="center">68.2</td>
<td align="center">76.7</td>
</tr>
<tr>
<td >Multi-IF (EN)</td>
<td align="center">62.1</td>
<td align="center">37.5</td>
<td align="center">32.5</td>
<td align="center">51.0</td>
<td align="center">51.9</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Long Context</i></td>
</tr>
<tr>
<td >HELMET</td>
<td align="center">41.2</td>
<td align="center">21.1</td>
<td align="center">N/A</td>
<td align="center">33.8</td>
<td align="center">38.6</td>
</tr>
<tr>
<td >RULER</td>
<td align="center">77.4</td>
<td align="center">55.1</td>
<td align="center">N/A</td>
<td align="center">65.9</td>
<td align="center">66.3</td>
</tr>
<tr>
<td >LongBench v1</td>
<td align="center">36.9</td>
<td align="center">32.4</td>
<td align="center">N/A</td>
<td align="center">41.9</td>
<td align="center">39.9</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Agentic Tool Use</i></td>
</tr>
<tr>
<td >BFCL-v3</td>
<td align="center">55.7</td>
<td align="center">44.1</td>
<td align="center">N/A</td>
<td align="center">52.2</td>
<td align="center">47.3</td>
</tr>
<tr>
<td >Tau-Bench (Airline)</td>
<td align="center">10.0</td>
<td align="center">31.5</td>
<td align="center">N/A</td>
<td align="center">13.5</td>
<td align="center">38.0</td>
</tr>
<tr>
<td >Tau-Bench (Retail)</td>
<td align="center">21.7</td>
<td align="center">5.7</td>
<td align="center">N/A</td>
<td align="center">4.6</td>
<td align="center">6.7</td>
</tr>
<tr>
<td align="center" colspan='6'><i>Multilinguality</i></td>
</tr>
<tr>
<td >KMMLU-Pro</td>
<td align="center">37.5</td>
<td align="center">24.6</td>
<td align="center">9.7</td>
<td align="center">29.5</td>
<td align="center">27.6</td>
</tr>
<tr>
<td >KMMLU-Redux</td>
<td align="center">40.4</td>
<td align="center">22.8</td>
<td align="center">19.4</td>
<td align="center">29.8</td>
<td align="center">26.4</td>
</tr>
<tr>
<td >KSM</td>
<td align="center">26.3</td>
<td align="center">0.1</td>
<td align="center">22.8</td>
<td align="center">16.3</td>
<td align="center">16.1</td>
</tr>
<tr>
<td >Ko-LongBench</td>
<td align="center">69.8</td>
<td align="center">16.4</td>
<td align="center">N/A</td>
<td align="center">57.1</td>
<td align="center">15.7</td>
</tr>
<tr>
<td >MMMLU (ES)</td>
<td align="center">54.6</td>
<td align="center">39.5</td>
<td align="center">35.9</td>
<td align="center">54.3</td>
<td align="center">55.1</td>
</tr>
<tr>
<td >MATH500 (ES)</td>
<td align="center">71.2</td>
<td align="center">38.5</td>
<td align="center">41.2</td>
<td align="center">66.0</td>
<td align="center">62.4</td>
</tr>
<tr>
<td >WMT24++ (ES)</td>
<td align="center">65.9</td>
<td align="center">58.2</td>
<td align="center">76.9</td>
<td align="center">76.7</td>
<td align="center">84.0 </td>
</tr>
</table>
## Usage Guideline
> [!IMPORTANT]
> To achieve the expected performance, we recommend using the following configurations:
>
> - For non-reasoning mode, we recommend using a lower temperature value such as `temperature<0.6` for better performance.
> - For reasoning mode (using `<think>` block), we recommend using `temperature=0.6` and `top_p=0.95`.
> - If you suffer from the model degeneration, we recommend using `presence_penalty=1.5`.
> - For Korean general conversation with 1.2B model, we suggest to use `temperature=0.1` to avoid code switching.
## Limitation
The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflect the views of LG AI Research.
- Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
- Biased responses may be generated, which are associated with age, gender, race, and so on.
- The generated responses rely heavily on statistics from the training data, which can result in the generation of
semantically or syntactically incorrect sentences.
- Since the model does not reflect the latest information, the responses may be false or contradictory.
LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
outputs violating LG AI's ethical principles when using EXAONE language models.
## License
The model is licensed under [EXAONE AI Model License Agreement 1.2 - NC](./LICENSE)
> [!NOTE]
> The main difference from the older version is as below:
> - We removed **the claim of model output ownership** from the license.
> - We restrict the model use **against the development of models that compete with EXAONE**.
> - We allow the model to be used for **educational purposes**, not just research.
## Citation
```
@article{exaone-4.0,
title={EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes},
author={{LG AI Research}},
journal={arXiv preprint arXiv:2507.11407},
year={2025}
}
```
## Contact
LG AI Research Technical Support: contact[email protected]
<!--End Original Model Card-->
---
# <span id="testllm" style="color: #7F7FFF;">π If you find these models useful</span>
Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
π [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
π¬ **How to test**:
Choose an **AI assistant type**:
- `TurboLLM` (GPT-4.1-mini)
- `HugLLM` (Hugginface Open-source models)
- `TestLLM` (Experimental CPU-only)
### **What Iβm Testing**
Iβm pushing the limits of **small open-source models for AI network monitoring**, specifically:
- **Function calling** against live network services
- **How small can a model go** while still handling:
- Automated **Nmap security scans**
- **Quantum-readiness checks**
- **Network Monitoring tasks**
π‘ **TestLLM** β Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
- β
**Zero-configuration setup**
- β³ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
- π§ **Help wanted!** If youβre into **edge-device AI**, letβs collaborate!
### **Other Assistants**
π’ **TurboLLM** β Uses **gpt-4.1-mini** :
- **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
- **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)
π΅ **HugLLM** β Latest Open-source models:
- π Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
### π‘ **Example commands you could test**:
1. `"Give me info on my websites SSL certificate"`
2. `"Check if my server is using quantum safe encyption for communication"`
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
### Final Word
I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAIβall out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) β. Your support helps cover service costs and allows me to raise token limits for everyone.
I'm also open to job opportunities or sponsorship.
Thank you! π
|