SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("Naveen20o1/all_MiniLM_L6_nav1")
# Run inference
sentences = [
    'legal_guardian',
    'Person',
    'Person',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset: sts-dev
- Evaluated with EmbeddingSimilarityEvaluator
| Metric | Value | 
|---|---|
| pearson_cosine | 0.8511 | 
| spearman_cosine | 0.8373 | 
| pearson_manhattan | 0.8233 | 
| spearman_manhattan | 0.8392 | 
| pearson_euclidean | 0.8236 | 
| spearman_euclidean | 0.8373 | 
| pearson_dot | 0.8511 | 
| spearman_dot | 0.8373 | 
| pearson_max | 0.8511 | 
| spearman_max | 0.8392 | 
Semantic Similarity
- Dataset: sts-dev_test
- Evaluated with EmbeddingSimilarityEvaluator
| Metric | Value | 
|---|---|
| pearson_cosine | 0.8296 | 
| spearman_cosine | 0.8281 | 
| pearson_manhattan | 0.8056 | 
| spearman_manhattan | 0.8281 | 
| pearson_euclidean | 0.8117 | 
| spearman_euclidean | 0.8281 | 
| pearson_dot | 0.8296 | 
| spearman_dot | 0.8281 | 
| pearson_max | 0.8296 | 
| spearman_max | 0.8281 | 
Training Details
Training Dataset
Unnamed Dataset
- Size: 900 training samples
- Columns: sentence1,sentence2, andscore
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 4.31 tokens
- max: 7 tokens
 - min: 3 tokens
- mean: 3.0 tokens
- max: 3 tokens
 - min: 0.0
- mean: 0.49
- max: 1.0
 
- Samples:sentence1 sentence2 score reachQuantity1.0manufacture_dateTime1.0participant_numberGeographical0.0
- Loss: CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 60 evaluation samples
- Columns: sentence1,sentence2, andscore
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 4.42 tokens
- max: 10 tokens
 - min: 3 tokens
- mean: 3.0 tokens
- max: 3 tokens
 - min: 0.0
- mean: 0.5
- max: 1.0
 
- Samples:sentence1 sentence2 score tax_amountCommunication0.0territoryGeographical1.0employment_dateGeographical0.0
- Loss: CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: steps
- per_device_train_batch_size: 16
- per_device_eval_batch_size: 16
- learning_rate: 2e-05
- num_train_epochs: 11
- warmup_ratio: 0.1
- fp16: True
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: steps
- prediction_loss_only: True
- per_device_train_batch_size: 16
- per_device_eval_batch_size: 16
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- learning_rate: 2e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 11
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: True
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- batch_sampler: batch_sampler
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-dev_test_spearman_cosine | 
|---|---|---|---|---|---|
| 0.8772 | 50 | 3.4043 | - | - | - | 
| 1.7544 | 100 | 1.7413 | 1.4082 | 0.8373 | - | 
| 2.6316 | 150 | 0.6863 | - | - | - | 
| 3.5088 | 200 | 0.4264 | 0.6584 | 0.8392 | - | 
| 4.3860 | 250 | 0.0927 | - | - | - | 
| 5.2632 | 300 | 0.1547 | 0.5512 | 0.8411 | - | 
| 6.1404 | 350 | 0.042 | - | - | - | 
| 7.0175 | 400 | 0.0422 | 0.5881 | 0.8392 | - | 
| 7.8947 | 450 | 0.0484 | - | - | - | 
| 8.7719 | 500 | 0.0506 | 0.6854 | 0.8353 | - | 
| 9.6491 | 550 | 0.0105 | - | - | - | 
| 10.5263 | 600 | 0.0039 | 0.6157 | 0.8373 | - | 
| 11.0 | 627 | - | - | - | 0.8281 | 
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
- Downloads last month
- -
Model tree for Naveen20o1/all_MiniLM_L6_nav1
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on sts devself-reported0.851
- Spearman Cosine on sts devself-reported0.837
- Pearson Manhattan on sts devself-reported0.823
- Spearman Manhattan on sts devself-reported0.839
- Pearson Euclidean on sts devself-reported0.824
- Spearman Euclidean on sts devself-reported0.837
- Pearson Dot on sts devself-reported0.851
- Spearman Dot on sts devself-reported0.837
- Pearson Max on sts devself-reported0.851
- Spearman Max on sts devself-reported0.839