Improve model card: Update pipeline tag, add library name, and usage example

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +41 -5
README.md CHANGED
@@ -1,11 +1,12 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: mask-generation
4
  base_model:
5
- - OpenGVLab/InternVL2.5-4B
6
- - facebook/sam2.1-hiera-large
 
 
7
  tags:
8
- - SeC
 
9
  ---
10
 
11
  # SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
@@ -31,6 +32,41 @@ tags:
31
  | **SeC (Ours)** | **82.7** | **81.7** | **86.5** | **75.3** | **91.3** | **88.6** | **70.0** |
32
 
33
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  ## Citation
35
 
36
  If you find this project useful in your research, please consider citing:
 
1
  ---
 
 
2
  base_model:
3
+ - OpenGVLab/InternVL2.5-4B
4
+ - facebook/sam2.1-hiera-large
5
+ license: apache-2.0
6
+ pipeline_tag: image-segmentation
7
  tags:
8
+ - SeC
9
+ library_name: transformers
10
  ---
11
 
12
  # SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
 
32
  | **SeC (Ours)** | **82.7** | **81.7** | **86.5** | **75.3** | **91.3** | **88.6** | **70.0** |
33
 
34
  ---
35
+
36
+ ## Usage
37
+
38
+ You can load the SeC model and processor using the `transformers` library with `trust_remote_code=True`. For comprehensive video object segmentation and detailed usage instructions, please refer to the project's [GitHub repository](https://github.com/OpenIXCLab/SeC), particularly `demo.ipynb` for single video inference and `INFERENCE.md` for full inference and evaluation.
39
+
40
+ ```python
41
+ import torch
42
+ from transformers import AutoModel, AutoProcessor
43
+ from PIL import Image
44
+
45
+ # Load model and processor
46
+ model_name = "OpenIXCLab/SeC-4B"
47
+ # Ensure your environment has the necessary PyTorch and transformers versions as specified in the GitHub repo.
48
+ model = AutoModel.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
49
+ processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
50
+
51
+ # Example: Assuming you have an image (e.g., a frame from a video) and a text query
52
+ # For full video processing, refer to the project's GitHub repository.
53
+ # Placeholder for an actual image path
54
+ # image = Image.open("path/to/your/image.jpg").convert("RGB")
55
+ # text_query = "segment the main object"
56
+
57
+ # # Prepare inputs
58
+ # inputs = processor(images=image, text=text_query, return_tensors="pt").to(model.device)
59
+
60
+ # # Perform inference
61
+ # with torch.no_grad():
62
+ # outputs = model(**inputs)
63
+
64
+ # The output format will vary depending on the model's implementation.
65
+ # Typically, for segmentation tasks, outputs might include logits or predicted masks.
66
+ # You will need to process these outputs further to visualize the segmentation.
67
+ print("Model loaded successfully. For actual inference with video data, please refer to the project's GitHub repository and demo.ipynb.")
68
+ ```
69
+
70
  ## Citation
71
 
72
  If you find this project useful in your research, please consider citing: