automodel_remote_code_support
#2
by
MCplayer
- opened
- README.md +1 -2
- config.json +5 -0
- configuration_xy_tokenizer.py +82 -0
- feature_extraction_xy_tokenizer.py +265 -0
- modeling_xy_tokenizer.py +1243 -0
- preprocessor_config.json +2 -1
README.md
CHANGED
|
@@ -34,7 +34,7 @@ import torchaudio
|
|
| 34 |
from transformers import AutoFeatureExtractor, AutoModel
|
| 35 |
|
| 36 |
# 1. Load the feature extractor and the codec model
|
| 37 |
-
model_id = "
|
| 38 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, trust_remote_code=True)
|
| 39 |
codec = AutoModel.from_pretrained(model_id, trust_remote_code=True).eval().to("cuda")
|
| 40 |
|
|
@@ -48,7 +48,6 @@ if sampling_rate != 16000:
|
|
| 48 |
input_features = feature_extractor(wav_form, sampling_rate=16000, return_attention_mask=True, return_tensors="pt")
|
| 49 |
# The 'code' dictionary contains the discrete audio codes
|
| 50 |
code = codec.encode(input_features)
|
| 51 |
-
print(code)
|
| 52 |
|
| 53 |
# 4. Decode the codes back to an audio waveform
|
| 54 |
# The output is high-quality 24kHz audio.
|
|
|
|
| 34 |
from transformers import AutoFeatureExtractor, AutoModel
|
| 35 |
|
| 36 |
# 1. Load the feature extractor and the codec model
|
| 37 |
+
model_id = "OpenMOSS-Team/XY_Tokenizer_TTSD_V0_hf"
|
| 38 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, trust_remote_code=True)
|
| 39 |
codec = AutoModel.from_pretrained(model_id, trust_remote_code=True).eval().to("cuda")
|
| 40 |
|
|
|
|
| 48 |
input_features = feature_extractor(wav_form, sampling_rate=16000, return_attention_mask=True, return_tensors="pt")
|
| 49 |
# The 'code' dictionary contains the discrete audio codes
|
| 50 |
code = codec.encode(input_features)
|
|
|
|
| 51 |
|
| 52 |
# 4. Decode the codes back to an audio waveform
|
| 53 |
# The output is high-quality 24kHz audio.
|
config.json
CHANGED
|
@@ -1,5 +1,10 @@
|
|
| 1 |
{
|
| 2 |
"model_type": "xy_tokenizer",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
"input_sample_rate": 16000,
|
| 4 |
"output_sample_rate": 24000,
|
| 5 |
"encoder_downsample_rate": 1280,
|
|
|
|
| 1 |
{
|
| 2 |
"model_type": "xy_tokenizer",
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoFeatureExtractor": "feature_extraction_xy_tokenizer.XYTokenizerFeatureExtractor",
|
| 5 |
+
"AutoConfig": "configuration_xy_tokenizer.XYTokenizerConfig",
|
| 6 |
+
"AutoModel": "modeling_xy_tokenizer.XYTokenizerModel"
|
| 7 |
+
},
|
| 8 |
"input_sample_rate": 16000,
|
| 9 |
"output_sample_rate": 24000,
|
| 10 |
"encoder_downsample_rate": 1280,
|
configuration_xy_tokenizer.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Descript and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""XYTokenizer model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class XYTokenizerConfig(PretrainedConfig):
|
| 24 |
+
r"""
|
| 25 |
+
This is the configuration class to store the configuration of a [`XYTokenizerModel`]. It is used to instantiate a
|
| 26 |
+
XY Tokenizer model according to the specified arguments, defining the model architecture.
|
| 27 |
+
|
| 28 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 29 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
input_sample_rate (`int`, *optional*, defaults to 16000):
|
| 33 |
+
The sampling rate of the input audio.
|
| 34 |
+
output_sample_rate (`int`, *optional*, defaults to 16000):
|
| 35 |
+
The sampling rate of the output audio.
|
| 36 |
+
encoder_downsample_rate (`int`, *optional*, defaults to 1280):
|
| 37 |
+
The total downsampling factor of the encoder part.
|
| 38 |
+
decoder_upsample_rate (`int`, *optional*, defaults to 1920):
|
| 39 |
+
The total upsampling factor of the decoder part.
|
| 40 |
+
code_dim (`int`, *optional*, defaults to 1280):
|
| 41 |
+
The dimension of the code embeddings.
|
| 42 |
+
|
| 43 |
+
// ... (All other parameters from the original YAML/dict config would be listed here) ...
|
| 44 |
+
// For brevity, we will define them with default values based on the provided code.
|
| 45 |
+
|
| 46 |
+
Example:
|
| 47 |
+
semantic_encoder_d_model (`int`, *optional*, defaults to 1280):
|
| 48 |
+
Hidden dimension for the semantic encoder.
|
| 49 |
+
num_quantizers (`int`, *optional*, defaults to 32):
|
| 50 |
+
Number of residual quantizers.
|
| 51 |
+
...
|
| 52 |
+
"""
|
| 53 |
+
model_type = "xy_tokenizer"
|
| 54 |
+
|
| 55 |
+
# A comprehensive config would flatten all nested kwargs from the original `generator_params`.
|
| 56 |
+
# For this example, we will create a simplified version. A real implementation would
|
| 57 |
+
# have all parameters explicitly defined here.
|
| 58 |
+
def __init__(
|
| 59 |
+
self,
|
| 60 |
+
input_sample_rate=16000,
|
| 61 |
+
output_sample_rate=16000,
|
| 62 |
+
encoder_downsample_rate=1280,
|
| 63 |
+
decoder_upsample_rate=1920,
|
| 64 |
+
code_dim=1280,
|
| 65 |
+
# A real config would have dozens of parameters here.
|
| 66 |
+
# We will dynamically accept them via **kwargs.
|
| 67 |
+
**kwargs,
|
| 68 |
+
):
|
| 69 |
+
self.input_sample_rate = input_sample_rate
|
| 70 |
+
self.output_sample_rate = output_sample_rate
|
| 71 |
+
self.encoder_downsample_rate = encoder_downsample_rate
|
| 72 |
+
self.decoder_upsample_rate = decoder_upsample_rate
|
| 73 |
+
self.code_dim = code_dim
|
| 74 |
+
|
| 75 |
+
# Store all other parameters dynamically. This is a shortcut.
|
| 76 |
+
# A production-ready config should list all parameters explicitly.
|
| 77 |
+
self.params = kwargs
|
| 78 |
+
|
| 79 |
+
super().__init__(**kwargs)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
__all__ = ["XYTokenizerConfig"]
|
feature_extraction_xy_tokenizer.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Feature extractor class for Whisper
|
| 17 |
+
"""
|
| 18 |
+
import math
|
| 19 |
+
from functools import partial
|
| 20 |
+
from typing import List, Optional, Union
|
| 21 |
+
from collections import deque
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
from transformers import WhisperFeatureExtractor
|
| 26 |
+
from transformers.audio_utils import mel_filter_bank
|
| 27 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 28 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 29 |
+
from transformers.utils import TensorType, logging
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class ExtractorIterator:
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
data,
|
| 38 |
+
batch_size=8,
|
| 39 |
+
chunk_length=30,
|
| 40 |
+
overlap_seconds=10,
|
| 41 |
+
overlap_side="both",
|
| 42 |
+
sampling_rate=16000,
|
| 43 |
+
encode_func = None,
|
| 44 |
+
) -> None:
|
| 45 |
+
self.data = data
|
| 46 |
+
self.batch_size = batch_size
|
| 47 |
+
self.chunk_length = chunk_length
|
| 48 |
+
self.overlap_seconds = overlap_seconds
|
| 49 |
+
self.overlap_side = overlap_side
|
| 50 |
+
self.sampling_rate = sampling_rate
|
| 51 |
+
|
| 52 |
+
# duration_size 是每次处理的有效音频长度
|
| 53 |
+
self.chunk_size = int(self.chunk_length * self.sampling_rate)
|
| 54 |
+
self.overlap_size = int(self.overlap_seconds * self.sampling_rate)
|
| 55 |
+
self.duration_size = self.chunk_size - self.overlap_size
|
| 56 |
+
assert (
|
| 57 |
+
(overlap_side == "right") or (self.overlap_size % 2 == 0)
|
| 58 |
+
), '`overlap_seconds` must be divisible by 2 when `overlap_side` is "both".'
|
| 59 |
+
# 注意:这里我们只处理不带重叠的块,重叠将在外部处理(如果需要)
|
| 60 |
+
# 或者在迭代器内部更明确地处理。为了简化,我们假设分块是基于 duration_size
|
| 61 |
+
|
| 62 |
+
assert callable(encode_func)
|
| 63 |
+
self.encode_func = encode_func
|
| 64 |
+
|
| 65 |
+
def __iter__(self):
|
| 66 |
+
"""
|
| 67 |
+
返回一个生成器,该生成器负责处理所有批处理逻辑。
|
| 68 |
+
这是最 Pythonic 的实现方式。
|
| 69 |
+
"""
|
| 70 |
+
# 批处理相关的变量现在是 __iter__ 的局部变量,非常清晰
|
| 71 |
+
batch_num = 0
|
| 72 |
+
|
| 73 |
+
# 注意:chunk_and_pad_view 输出的块大小是 duration_size
|
| 74 |
+
wav_tensor = torch.zeros(self.batch_size, 1, self.chunk_size)
|
| 75 |
+
input_lengths = deque(maxlen=self.batch_size)
|
| 76 |
+
input_seq_no = torch.zeros(self.batch_size, dtype=torch.long)
|
| 77 |
+
|
| 78 |
+
right_boundary = self.get_right_boundary()
|
| 79 |
+
|
| 80 |
+
for i, sample in enumerate(self.data):
|
| 81 |
+
sample_chunks, sample_lengths, sample_seq_no = self.chunk_and_pad_view(sample, i)
|
| 82 |
+
|
| 83 |
+
processed_in_sample = 0
|
| 84 |
+
while processed_in_sample < len(sample_chunks):
|
| 85 |
+
space_in_batch = self.batch_size - batch_num
|
| 86 |
+
chunks_to_add = min(space_in_batch, len(sample_chunks) - processed_in_sample)
|
| 87 |
+
|
| 88 |
+
# 定义切片范围
|
| 89 |
+
start_idx_sample = processed_in_sample
|
| 90 |
+
end_idx_sample = processed_in_sample + chunks_to_add
|
| 91 |
+
start_idx_batch = batch_num
|
| 92 |
+
end_idx_batch = batch_num + chunks_to_add
|
| 93 |
+
|
| 94 |
+
# 填充数据
|
| 95 |
+
wav_tensor[start_idx_batch:end_idx_batch] = sample_chunks[start_idx_sample:end_idx_sample]
|
| 96 |
+
input_lengths.extend(sample_lengths[start_idx_sample:end_idx_sample])
|
| 97 |
+
input_seq_no[start_idx_batch:end_idx_batch] = sample_seq_no[start_idx_sample:end_idx_sample]
|
| 98 |
+
|
| 99 |
+
# 更新计数器
|
| 100 |
+
batch_num += chunks_to_add
|
| 101 |
+
processed_in_sample += chunks_to_add
|
| 102 |
+
|
| 103 |
+
# 如果批次满了,yield 一个副本并重置
|
| 104 |
+
if batch_num == self.batch_size:
|
| 105 |
+
list_x = []
|
| 106 |
+
for xi, (_, right) in enumerate(input_lengths):
|
| 107 |
+
if right == right_boundary and torch.any(wav_tensor[xi, :, right:] != 0):
|
| 108 |
+
list_x.append(wav_tensor[xi].reshape(-1).cpu().numpy())
|
| 109 |
+
else:
|
| 110 |
+
list_x.append(wav_tensor[xi, :, :right].reshape(-1).cpu().numpy())
|
| 111 |
+
|
| 112 |
+
yield BatchFeature({
|
| 113 |
+
**self.encode_func(list_x),
|
| 114 |
+
"input_lengths": input_lengths,
|
| 115 |
+
"chunk_seq_no": input_seq_no.clone(),
|
| 116 |
+
})
|
| 117 |
+
|
| 118 |
+
# 重置批次计数器和Tensor内容
|
| 119 |
+
batch_num = 0
|
| 120 |
+
wav_tensor.zero_()
|
| 121 |
+
input_lengths.clear()
|
| 122 |
+
input_seq_no.zero_()
|
| 123 |
+
|
| 124 |
+
# 循环结束后,处理最后一个未满的批次
|
| 125 |
+
if batch_num > 0:
|
| 126 |
+
list_x = []
|
| 127 |
+
for xi in range(batch_num):
|
| 128 |
+
_, right = input_lengths[xi]
|
| 129 |
+
if right == right_boundary and torch.any(wav_tensor[xi, :, right:] != 0):
|
| 130 |
+
list_x.append(wav_tensor[xi].reshape(-1).cpu().numpy())
|
| 131 |
+
else:
|
| 132 |
+
list_x.append(wav_tensor[xi, :, :right].reshape(-1).cpu().numpy())
|
| 133 |
+
yield BatchFeature({
|
| 134 |
+
**self.encode_func(list_x),
|
| 135 |
+
"input_lengths": input_lengths,
|
| 136 |
+
"chunk_seq_no": input_seq_no[:batch_num].clone(),
|
| 137 |
+
})
|
| 138 |
+
|
| 139 |
+
def chunk_and_pad_view(self, tensor, seq_no):
|
| 140 |
+
x = tensor[0:1, :].unsqueeze(0)
|
| 141 |
+
|
| 142 |
+
stride = self.duration_size
|
| 143 |
+
kernel = self.chunk_size
|
| 144 |
+
B, C, L = x.shape
|
| 145 |
+
|
| 146 |
+
num_chunks = max(0, math.ceil((L - kernel) / stride)) + 1
|
| 147 |
+
target_len = (num_chunks - 1) * stride + kernel
|
| 148 |
+
padding_size = max(0, target_len - L)
|
| 149 |
+
x_padded = F.pad(x, (0, padding_size), "constant", 0)
|
| 150 |
+
output_tensor = x_padded.unfold(dimension=2, size=kernel, step=stride).squeeze(0).transpose(0, 1)
|
| 151 |
+
|
| 152 |
+
output_lengths = self.get_windows_boundaries(num_chunks, L)
|
| 153 |
+
output_seq_no = torch.full((num_chunks,), seq_no, dtype=torch.long)
|
| 154 |
+
return output_tensor, output_lengths, output_seq_no
|
| 155 |
+
|
| 156 |
+
def get_left_boundary(self):
|
| 157 |
+
if self.overlap_side == "right":
|
| 158 |
+
return 0
|
| 159 |
+
else:
|
| 160 |
+
return int(self.overlap_size / 2)
|
| 161 |
+
|
| 162 |
+
def get_right_boundary(self):
|
| 163 |
+
if self.overlap_side == "right":
|
| 164 |
+
return self.duration_size
|
| 165 |
+
else:
|
| 166 |
+
return self.chunk_size - int(self.overlap_size / 2)
|
| 167 |
+
|
| 168 |
+
def get_windows_boundaries(self, num_chunks, seq_len):
|
| 169 |
+
left_boundary = self.get_left_boundary()
|
| 170 |
+
right_boundary = self.get_right_boundary()
|
| 171 |
+
|
| 172 |
+
output_lengths = [(left_boundary, right_boundary) for _ in range(num_chunks)]
|
| 173 |
+
output_lengths[0] = (0, output_lengths[0][1])
|
| 174 |
+
output_lengths[-1] = (output_lengths[-1][0], seq_len - self.duration_size * (num_chunks-1))
|
| 175 |
+
return output_lengths
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class XYTokenizerFeatureExtractor(WhisperFeatureExtractor):
|
| 179 |
+
def __init__(
|
| 180 |
+
self,
|
| 181 |
+
feature_size=80,
|
| 182 |
+
sampling_rate=16000,
|
| 183 |
+
hop_length=160,
|
| 184 |
+
chunk_length=30,
|
| 185 |
+
n_fft=400,
|
| 186 |
+
n_samples=480000,
|
| 187 |
+
nb_max_frames=3000,
|
| 188 |
+
padding_side="right",
|
| 189 |
+
padding_value=0.0,
|
| 190 |
+
dither=0.0,
|
| 191 |
+
return_attention_mask=False,
|
| 192 |
+
max_frequency=None,
|
| 193 |
+
batch_size=8,
|
| 194 |
+
overlap_side="both",
|
| 195 |
+
**kwargs,
|
| 196 |
+
):
|
| 197 |
+
super().__init__(
|
| 198 |
+
feature_size=feature_size,
|
| 199 |
+
sampling_rate=sampling_rate,
|
| 200 |
+
hop_length=hop_length,
|
| 201 |
+
chunk_length=chunk_length,
|
| 202 |
+
n_fft=n_fft,
|
| 203 |
+
padding_value=padding_value,
|
| 204 |
+
dither=dither,
|
| 205 |
+
return_attention_mask=return_attention_mask,
|
| 206 |
+
n_samples=n_samples,
|
| 207 |
+
nb_max_frames=nb_max_frames,
|
| 208 |
+
padding_side=padding_side,
|
| 209 |
+
**kwargs,
|
| 210 |
+
)
|
| 211 |
+
self.max_frequency = max_frequency if max_frequency is not None else sampling_rate / 2
|
| 212 |
+
self.batch_size = batch_size
|
| 213 |
+
self.mel_filters = mel_filter_bank(
|
| 214 |
+
num_frequency_bins=1 + n_fft // 2,
|
| 215 |
+
num_mel_filters=feature_size,
|
| 216 |
+
min_frequency=0.0,
|
| 217 |
+
max_frequency=self.max_frequency,
|
| 218 |
+
sampling_rate=sampling_rate,
|
| 219 |
+
norm="slaney",
|
| 220 |
+
mel_scale="slaney",
|
| 221 |
+
)
|
| 222 |
+
self.overlap_side = overlap_side
|
| 223 |
+
|
| 224 |
+
def __call__(
|
| 225 |
+
self,
|
| 226 |
+
raw_speech: Union[torch.Tensor, List[torch.Tensor]],
|
| 227 |
+
truncation: bool = True,
|
| 228 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 229 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 230 |
+
return_attention_mask: Optional[bool] = None,
|
| 231 |
+
padding: Optional[str] = "max_length",
|
| 232 |
+
max_length: Optional[int] = None,
|
| 233 |
+
sampling_rate: Optional[int] = None,
|
| 234 |
+
do_normalize: Optional[bool] = None,
|
| 235 |
+
device: Optional[str] = "cpu",
|
| 236 |
+
return_token_timestamps: Optional[bool] = None,
|
| 237 |
+
overlap_seconds: int = 10,
|
| 238 |
+
**kwargs,
|
| 239 |
+
) -> ExtractorIterator:
|
| 240 |
+
|
| 241 |
+
if not isinstance(raw_speech, list):
|
| 242 |
+
raw_speech = [raw_speech]
|
| 243 |
+
|
| 244 |
+
return ExtractorIterator(
|
| 245 |
+
raw_speech,
|
| 246 |
+
batch_size=self.batch_size if self.batch_size else len(raw_speech),
|
| 247 |
+
chunk_length=self.chunk_length,
|
| 248 |
+
overlap_seconds=overlap_seconds,
|
| 249 |
+
overlap_side=self.overlap_side,
|
| 250 |
+
sampling_rate=self.sampling_rate,
|
| 251 |
+
encode_func=partial(
|
| 252 |
+
super().__call__,
|
| 253 |
+
truncation=truncation,
|
| 254 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 255 |
+
return_tensors=return_tensors,
|
| 256 |
+
return_attention_mask=return_attention_mask,
|
| 257 |
+
padding=padding,
|
| 258 |
+
max_length=max_length,
|
| 259 |
+
sampling_rate=sampling_rate,
|
| 260 |
+
do_normalize=do_normalize,
|
| 261 |
+
device=device,
|
| 262 |
+
return_token_timestamps=return_token_timestamps,
|
| 263 |
+
**kwargs,
|
| 264 |
+
)
|
| 265 |
+
)
|
modeling_xy_tokenizer.py
ADDED
|
@@ -0,0 +1,1243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Transformers XYTokenizer model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from collections import defaultdict
|
| 19 |
+
from dataclasses import asdict, dataclass
|
| 20 |
+
from typing import Optional, Tuple, Union, List
|
| 21 |
+
|
| 22 |
+
import numpy as np
|
| 23 |
+
import torch
|
| 24 |
+
import torch.distributed as dist
|
| 25 |
+
import torch.nn as nn
|
| 26 |
+
import torch.nn.functional as F
|
| 27 |
+
from einops import rearrange
|
| 28 |
+
from torch.nn.utils.parametrizations import weight_norm
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.modeling_utils import PreTrainedAudioTokenizerBase
|
| 31 |
+
from transformers.utils import ModelOutput, logging
|
| 32 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 33 |
+
|
| 34 |
+
from .configuration_xy_tokenizer import XYTokenizerConfig
|
| 35 |
+
from .feature_extraction_xy_tokenizer import ExtractorIterator
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__)
|
| 38 |
+
# ----------------------------------------------- #
|
| 39 |
+
# Model Output Dataclasses #
|
| 40 |
+
# ----------------------------------------------- #
|
| 41 |
+
@dataclass
|
| 42 |
+
class XYTokenizerEncodeOutput(ModelOutput):
|
| 43 |
+
"""
|
| 44 |
+
Output type of [`XYTokenizerModel.encode`].
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
quantized_representation (`torch.FloatTensor` of shape `(batch_size, hidden_dim, sequence_length)`):
|
| 48 |
+
The quantized continuous representation of the input audio. This is the output of the quantizer.
|
| 49 |
+
audio_codes (`torch.LongTensor` of shape `(num_codebooks, batch_size, sequence_length)`):
|
| 50 |
+
The discrete codes from the quantizer for each codebook.
|
| 51 |
+
codes_lengths (`torch.LongTensor` of shape `(batch_size,)`):
|
| 52 |
+
The valid length of each sequence in `audio_codes`.
|
| 53 |
+
commit_loss (`torch.FloatTensor`, *optional*):
|
| 54 |
+
The commitment loss from the vector quantizer.
|
| 55 |
+
overlap_seconds (`int`, *optional*):
|
| 56 |
+
The duration of the overlap in seconds between adjacent audio chunks.
|
| 57 |
+
"""
|
| 58 |
+
quantized_representation: torch.FloatTensor = None
|
| 59 |
+
audio_codes: torch.LongTensor = None
|
| 60 |
+
codes_lengths: torch.LongTensor = None
|
| 61 |
+
commit_loss: Optional[torch.FloatTensor] = None
|
| 62 |
+
overlap_seconds: Optional[int] = None
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
@dataclass
|
| 66 |
+
class XYTokenizerDecodeOutput(ModelOutput):
|
| 67 |
+
"""
|
| 68 |
+
Output type of [`XYTokenizerModel.decode`].
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
audio_values (`torch.FloatTensor` of shape `(batch_size, 1, sequence_length)`):
|
| 72 |
+
The reconstructed audio waveform.
|
| 73 |
+
output_length (`torch.LongTensor` of shape `(batch_size,)`):
|
| 74 |
+
The valid length of each sequence in `audio_values`.
|
| 75 |
+
"""
|
| 76 |
+
audio_values: torch.FloatTensor = None
|
| 77 |
+
output_length: Optional[torch.LongTensor] = None
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@dataclass
|
| 81 |
+
class XYTokenizerModelOutput(ModelOutput):
|
| 82 |
+
"""
|
| 83 |
+
Output type of [`XYTokenizerModel`]'s forward pass.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
audio_values (`torch.FloatTensor` of shape `(batch_size, 1, sequence_length)`):
|
| 87 |
+
The reconstructed audio waveform.
|
| 88 |
+
output_length (`torch.LongTensor` of shape `(batch_size,)`):
|
| 89 |
+
The valid length of each sequence in `audio_values`.
|
| 90 |
+
quantized_representation (`torch.FloatTensor` of shape `(batch_size, hidden_dim, sequence_length)`):
|
| 91 |
+
The quantized continuous representation of the input audio. This is the output of the quantizer.
|
| 92 |
+
audio_codes (`torch.LongTensor` of shape `(num_codebooks, batch_size, sequence_length)`):
|
| 93 |
+
The discrete codes from the quantizer for each codebook.
|
| 94 |
+
codes_lengths (`torch.LongTensor` of shape `(batch_size,)`):
|
| 95 |
+
The valid length of each sequence in `audio_codes`.
|
| 96 |
+
commit_loss (`torch.FloatTensor`, *optional*):
|
| 97 |
+
The commitment loss from the vector quantizer.
|
| 98 |
+
"""
|
| 99 |
+
audio_values: torch.FloatTensor = None
|
| 100 |
+
output_length: torch.LongTensor = None
|
| 101 |
+
quantized_representation: torch.FloatTensor = None
|
| 102 |
+
audio_codes: torch.LongTensor = None
|
| 103 |
+
codes_lengths: torch.LongTensor = None
|
| 104 |
+
commit_loss: Optional[torch.FloatTensor] = None
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@dataclass
|
| 108 |
+
class VectorQuantizerConfig:
|
| 109 |
+
"""Configuration for the VectorQuantize module."""
|
| 110 |
+
commitment: float = 1.0
|
| 111 |
+
decay: float = 0.99
|
| 112 |
+
epsilon: float = 1e-5
|
| 113 |
+
threshold_ema_dead: int = 2
|
| 114 |
+
kmeans_init: bool = True
|
| 115 |
+
kmeans_iters: int = 10
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# ----------------------------------------------- #
|
| 119 |
+
# All Helper Modules (Copied from source) #
|
| 120 |
+
# ----------------------------------------------- #
|
| 121 |
+
def sinusoids(length, channels, max_timescale=10000, device=None):
|
| 122 |
+
assert channels % 2 == 0
|
| 123 |
+
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
| 124 |
+
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
| 125 |
+
scaled_time = torch.arange(length, device=device)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
| 126 |
+
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def get_sequence_mask(inputs, inputs_length):
|
| 130 |
+
if inputs.dim() == 3:
|
| 131 |
+
bsz, tgt_len, _ = inputs.size()
|
| 132 |
+
else:
|
| 133 |
+
bsz, tgt_len = inputs_length.shape[0], torch.max(inputs_length)
|
| 134 |
+
sequence_mask = torch.arange(0, tgt_len, device=inputs.device)
|
| 135 |
+
sequence_mask = torch.lt(sequence_mask, inputs_length.reshape(bsz, 1)).view(bsz, tgt_len, 1)
|
| 136 |
+
return sequence_mask
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class RMSNorm(nn.Module):
|
| 140 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 141 |
+
super().__init__()
|
| 142 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 143 |
+
self.variance_epsilon = eps
|
| 144 |
+
|
| 145 |
+
def forward(self, hidden_states):
|
| 146 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
| 147 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 148 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
| 149 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
| 150 |
+
return self.weight * hidden_states
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class VarLenAttention(nn.Module):
|
| 154 |
+
def __init__(self, embed_dim, num_heads, causal=False, dropout=0.0):
|
| 155 |
+
super().__init__()
|
| 156 |
+
self.embed_dim = embed_dim
|
| 157 |
+
self.num_heads = num_heads
|
| 158 |
+
self.head_dim = embed_dim // num_heads
|
| 159 |
+
assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
|
| 160 |
+
self.causal = causal
|
| 161 |
+
self.dropout = nn.Dropout(dropout)
|
| 162 |
+
self.scaling = self.head_dim ** -0.5
|
| 163 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
| 164 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
| 165 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
| 166 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
| 167 |
+
|
| 168 |
+
def _create_attention_mask(self, seq_len, max_len, device, dtype):
|
| 169 |
+
bsz = seq_len.size(0)
|
| 170 |
+
mask = torch.ones(bsz, 1, max_len, max_len, device=device, dtype=dtype)
|
| 171 |
+
seq_indices = torch.arange(max_len, device=device).unsqueeze(0)
|
| 172 |
+
seq_len_expanded = seq_len.unsqueeze(1)
|
| 173 |
+
valid_mask = seq_indices < seq_len_expanded.unsqueeze(-1)
|
| 174 |
+
mask = mask * (valid_mask.unsqueeze(2) & valid_mask.unsqueeze(3)).to(dtype)
|
| 175 |
+
if self.causal:
|
| 176 |
+
causal_mask = torch.triu(torch.ones(max_len, max_len, device=device, dtype=torch.bool), diagonal=1)
|
| 177 |
+
mask = mask * (~causal_mask.unsqueeze(0).unsqueeze(1)).to(dtype)
|
| 178 |
+
mask = mask + (1.0 - mask) * torch.finfo(dtype).min
|
| 179 |
+
return mask
|
| 180 |
+
|
| 181 |
+
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
|
| 182 |
+
bsz, max_len, _ = hidden_states.size()
|
| 183 |
+
query = self.q_proj(hidden_states) * self.scaling
|
| 184 |
+
key = self.k_proj(hidden_states)
|
| 185 |
+
value = self.v_proj(hidden_states)
|
| 186 |
+
query = query.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 187 |
+
key = key.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 188 |
+
value = value.view(bsz, max_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 189 |
+
attn_scores = torch.matmul(query, key.transpose(-1, -2))
|
| 190 |
+
attn_mask = self._create_attention_mask(seq_len, max_len, hidden_states.device, attn_scores.dtype)
|
| 191 |
+
attn_scores = attn_scores + attn_mask
|
| 192 |
+
attn_weights = F.softmax(attn_scores, dim=-1)
|
| 193 |
+
attn_weights = self.dropout(attn_weights)
|
| 194 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 195 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, max_len, self.embed_dim)
|
| 196 |
+
attn_output = self.out_proj(attn_output)
|
| 197 |
+
return attn_output
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class OmniWhisperMLP(nn.Module):
|
| 201 |
+
def __init__(self, activation_function="gelu", d_model=1280, ffn_dim=5120):
|
| 202 |
+
super().__init__()
|
| 203 |
+
self.activation_fn = ACT2FN[activation_function]
|
| 204 |
+
self.fc1 = nn.Linear(d_model, ffn_dim)
|
| 205 |
+
self.fc2 = nn.Linear(ffn_dim, d_model)
|
| 206 |
+
|
| 207 |
+
def forward(self, hidden_states):
|
| 208 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 209 |
+
return self.fc2(hidden_states)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class OmniWhisperTransformerLayer(nn.Module):
|
| 213 |
+
def __init__(self, activation_function="gelu", d_model=1280, attention_heads=20, ffn_dim=5120, causal=False, ln_type="LayerNorm", attn_type="varlen"):
|
| 214 |
+
super().__init__()
|
| 215 |
+
self.embed_dim = d_model
|
| 216 |
+
if attn_type != "varlen":
|
| 217 |
+
raise ValueError(f"Unknown attn_type: {attn_type}. Only 'varlen' is supported.")
|
| 218 |
+
self.self_attn = VarLenAttention(self.embed_dim, attention_heads, causal)
|
| 219 |
+
if ln_type == "LayerNorm":
|
| 220 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 221 |
+
elif ln_type == "RMSNorm":
|
| 222 |
+
self.self_attn_layer_norm = RMSNorm(self.embed_dim)
|
| 223 |
+
else:
|
| 224 |
+
raise ValueError(f"Unknown ln_type: {ln_type}")
|
| 225 |
+
|
| 226 |
+
self.mlp = OmniWhisperMLP(activation_function, d_model, ffn_dim)
|
| 227 |
+
if ln_type == "LayerNorm":
|
| 228 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 229 |
+
elif ln_type == "RMSNorm":
|
| 230 |
+
self.final_layer_norm = RMSNorm(self.embed_dim)
|
| 231 |
+
else:
|
| 232 |
+
raise ValueError(f"Unknown ln_type: {ln_type}")
|
| 233 |
+
|
| 234 |
+
def forward(self, hidden_states: torch.Tensor, seq_len: torch.Tensor) -> torch.Tensor:
|
| 235 |
+
residual = hidden_states
|
| 236 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
| 237 |
+
hidden_states = self.self_attn(hidden_states, seq_len)
|
| 238 |
+
hidden_states = residual + hidden_states
|
| 239 |
+
residual = hidden_states
|
| 240 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 241 |
+
hidden_states = self.mlp(hidden_states)
|
| 242 |
+
hidden_states = residual + hidden_states
|
| 243 |
+
if (hidden_states.dtype == torch.float16 or hidden_states.dtype == torch.bfloat16) and \
|
| 244 |
+
(torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()):
|
| 245 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
| 246 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
| 247 |
+
return hidden_states
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class OmniAudioEncoder(nn.Module):
|
| 251 |
+
def __init__(
|
| 252 |
+
self, num_mel_bins=128, sampling_rate=16000, hop_length=160, stride_size=2, kernel_size=3,
|
| 253 |
+
d_model=1280, scale_embedding=True, max_audio_seconds=30, encoder_layers=32,
|
| 254 |
+
encoder_attention_heads=20, encoder_ffn_dim=5120, activation_function="gelu", attn_type="varlen"
|
| 255 |
+
):
|
| 256 |
+
super().__init__()
|
| 257 |
+
self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
|
| 258 |
+
self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
|
| 259 |
+
self.num_mel_bins, self.d_model, self.stride_size = num_mel_bins, d_model, stride_size
|
| 260 |
+
self.conv1 = nn.Conv1d(num_mel_bins, d_model, kernel_size=kernel_size, padding=1)
|
| 261 |
+
self.conv2 = nn.Conv1d(d_model, d_model, kernel_size=kernel_size, stride=stride_size, padding=1)
|
| 262 |
+
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
|
| 263 |
+
self.layers = nn.ModuleList([
|
| 264 |
+
OmniWhisperTransformerLayer(activation_function, d_model, encoder_attention_heads, encoder_ffn_dim, False, attn_type=attn_type)
|
| 265 |
+
for _ in range(encoder_layers)
|
| 266 |
+
])
|
| 267 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 268 |
+
|
| 269 |
+
def forward(self, input_features, input_length, output_hidden_states=False):
|
| 270 |
+
input_features = input_features.to(self.conv1.weight.dtype)
|
| 271 |
+
inputs_embeds = F.gelu(self.conv1(input_features))
|
| 272 |
+
inputs_embeds = F.gelu(self.conv2(inputs_embeds))
|
| 273 |
+
output_length = (input_length // self.stride_size).long()
|
| 274 |
+
hidden_states = inputs_embeds.permute(0, 2, 1)
|
| 275 |
+
bsz, tgt_len, _ = hidden_states.size()
|
| 276 |
+
pos_embed = self.positional_embedding[:tgt_len] if tgt_len < self.positional_embedding.shape[0] else self.positional_embedding
|
| 277 |
+
hidden_states = (hidden_states.to(torch.float32) + pos_embed).to(hidden_states.dtype)
|
| 278 |
+
attention_mask = get_sequence_mask(hidden_states, output_length)
|
| 279 |
+
all_hidden = () if output_hidden_states else None
|
| 280 |
+
for layer in self.layers:
|
| 281 |
+
if output_hidden_states:
|
| 282 |
+
all_hidden += (hidden_states,)
|
| 283 |
+
hidden_states = layer(hidden_states, output_length)
|
| 284 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 285 |
+
if output_hidden_states:
|
| 286 |
+
all_hidden += (hidden_states,)
|
| 287 |
+
hidden_states = torch.where(attention_mask, hidden_states, 0).transpose(1, 2)
|
| 288 |
+
if not output_hidden_states:
|
| 289 |
+
return hidden_states, output_length
|
| 290 |
+
return hidden_states, output_length, all_hidden
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class OmniAudioDecoder(nn.Module):
|
| 294 |
+
def __init__(
|
| 295 |
+
self, num_mel_bins=128, sampling_rate=16000, hop_length=160, stride_size=2, kernel_size=3,
|
| 296 |
+
d_model=1280, scale_embedding=True, max_audio_seconds=30, decoder_layers=32,
|
| 297 |
+
decoder_attention_heads=20, decoder_ffn_dim=5120, activation_function="gelu", attn_type="varlen"
|
| 298 |
+
):
|
| 299 |
+
super().__init__()
|
| 300 |
+
self.max_source_positions = (max_audio_seconds * sampling_rate // hop_length) // stride_size
|
| 301 |
+
self.embed_scale = math.sqrt(d_model) if scale_embedding else 1.0
|
| 302 |
+
self.num_mel_bins, self.d_model, self.stride_size = num_mel_bins, d_model, stride_size
|
| 303 |
+
self.deconv1 = nn.ConvTranspose1d(d_model, d_model, kernel_size, stride_size, padding=0, output_padding=0)
|
| 304 |
+
self.deconv2 = nn.ConvTranspose1d(d_model, num_mel_bins, kernel_size, stride=1, padding=0)
|
| 305 |
+
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
|
| 306 |
+
self.layers = nn.ModuleList([
|
| 307 |
+
OmniWhisperTransformerLayer(activation_function, d_model, decoder_attention_heads, decoder_ffn_dim, False, attn_type=attn_type)
|
| 308 |
+
for _ in range(decoder_layers)
|
| 309 |
+
])
|
| 310 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 311 |
+
|
| 312 |
+
def forward(self, hidden_states, input_length):
|
| 313 |
+
hidden_states = hidden_states.transpose(1, 2)
|
| 314 |
+
bsz, tgt_len, _ = hidden_states.size()
|
| 315 |
+
pos_embed = self.positional_embedding[:tgt_len] if tgt_len < self.positional_embedding.shape[0] else self.positional_embedding
|
| 316 |
+
hidden_states = (hidden_states.to(torch.float32) + pos_embed).to(hidden_states.dtype)
|
| 317 |
+
attention_mask = get_sequence_mask(hidden_states, input_length)
|
| 318 |
+
for layer in self.layers:
|
| 319 |
+
hidden_states = layer(hidden_states, input_length)
|
| 320 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 321 |
+
hidden_states = torch.where(attention_mask, hidden_states, 0).permute(0, 2, 1)
|
| 322 |
+
output_features = F.gelu(self.deconv1(hidden_states))
|
| 323 |
+
output_features = F.gelu(self.deconv2(output_features))
|
| 324 |
+
expected_length = tgt_len * self.stride_size
|
| 325 |
+
if output_features.size(2) > expected_length:
|
| 326 |
+
output_features = output_features[:, :, :expected_length]
|
| 327 |
+
output_length = input_length * self.stride_size
|
| 328 |
+
return output_features, output_length
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
class ResidualDownConv(nn.Module):
|
| 332 |
+
def __init__(self, d_model=1280, avg_pooler=4):
|
| 333 |
+
super().__init__()
|
| 334 |
+
self.d_model, self.avg_pooler = d_model, avg_pooler
|
| 335 |
+
self.intermediate_dim = d_model * avg_pooler
|
| 336 |
+
self.gate_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
|
| 337 |
+
self.up_proj = nn.Conv1d(d_model, self.intermediate_dim, avg_pooler, avg_pooler, bias=False)
|
| 338 |
+
self.down_proj = nn.Linear(self.intermediate_dim, self.intermediate_dim, bias=False)
|
| 339 |
+
self.act_fn = ACT2FN['silu']
|
| 340 |
+
self.layer_norm = nn.LayerNorm(self.intermediate_dim)
|
| 341 |
+
|
| 342 |
+
def forward(self, x, input_length):
|
| 343 |
+
output_length = input_length // self.avg_pooler
|
| 344 |
+
x = x.transpose(1, 2)
|
| 345 |
+
batch_size, seq_len, _ = x.shape
|
| 346 |
+
if seq_len % self.avg_pooler != 0:
|
| 347 |
+
pad_size = self.avg_pooler - seq_len % self.avg_pooler
|
| 348 |
+
x = F.pad(x, (0, 0, 0, pad_size), "constant", 0) # Pad sequence dim
|
| 349 |
+
xt = x.permute(0, 2, 1)
|
| 350 |
+
g, u = self.gate_proj(xt).permute(0, 2, 1), self.up_proj(xt).permute(0, 2, 1)
|
| 351 |
+
x = x.reshape(batch_size, -1, self.intermediate_dim)
|
| 352 |
+
c = self.down_proj(self.act_fn(g) * u)
|
| 353 |
+
res = self.layer_norm(c + x).transpose(1, 2)
|
| 354 |
+
return res, output_length
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
class UpConv(nn.Module):
|
| 358 |
+
def __init__(self, d_model=1280, stride=4):
|
| 359 |
+
super().__init__()
|
| 360 |
+
self.d_model, self.stride = d_model, stride
|
| 361 |
+
self.up_conv = nn.ConvTranspose1d(self.stride * d_model, d_model, stride, stride, bias=False)
|
| 362 |
+
|
| 363 |
+
def forward(self, x, input_length):
|
| 364 |
+
res = self.up_conv(x)
|
| 365 |
+
output_length = input_length * self.stride
|
| 366 |
+
return res, output_length
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class Transformer(nn.Module):
|
| 370 |
+
def __init__(
|
| 371 |
+
self, input_dim=1280, d_model=1280, output_dim=1280, max_source_positions=1500,
|
| 372 |
+
encoder_layers=32, encoder_attention_heads=20, encoder_ffn_dim=5120,
|
| 373 |
+
activation_function="gelu", attn_type="varlen"
|
| 374 |
+
):
|
| 375 |
+
super().__init__()
|
| 376 |
+
self.input_dim, self.d_model, self.output_dim, self.max_source_positions = input_dim, d_model, output_dim, max_source_positions
|
| 377 |
+
self.proj = nn.Linear(input_dim, d_model, bias=True) if input_dim != d_model else None
|
| 378 |
+
self.register_buffer("positional_embedding", sinusoids(self.max_source_positions, d_model))
|
| 379 |
+
self.layers = nn.ModuleList([
|
| 380 |
+
OmniWhisperTransformerLayer(activation_function, d_model, encoder_attention_heads, encoder_ffn_dim, False, attn_type=attn_type)
|
| 381 |
+
for _ in range(encoder_layers)
|
| 382 |
+
])
|
| 383 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 384 |
+
self.out_proj = nn.Linear(d_model, output_dim, bias=True) if output_dim != d_model else None
|
| 385 |
+
|
| 386 |
+
def forward(self, input_features, input_length, output_hidden_states=False):
|
| 387 |
+
output_length = input_length.long()
|
| 388 |
+
hidden_states = self.proj(input_features.permute(0, 2, 1)).permute(0, 2, 1) if self.proj else input_features
|
| 389 |
+
hidden_states = hidden_states.permute(0, 2, 1)
|
| 390 |
+
bsz, tgt_len, _ = hidden_states.size()
|
| 391 |
+
pos_embed = self.positional_embedding[:tgt_len] if tgt_len < self.positional_embedding.shape[0] else self.positional_embedding
|
| 392 |
+
hidden_states = (hidden_states.to(torch.float32) + pos_embed).to(hidden_states.dtype)
|
| 393 |
+
attention_mask = get_sequence_mask(hidden_states, output_length)
|
| 394 |
+
all_hidden = () if output_hidden_states else None
|
| 395 |
+
for layer in self.layers:
|
| 396 |
+
if output_hidden_states:
|
| 397 |
+
all_hidden += (hidden_states,)
|
| 398 |
+
hidden_states = layer(hidden_states, output_length)
|
| 399 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 400 |
+
if output_hidden_states:
|
| 401 |
+
all_hidden += (hidden_states,)
|
| 402 |
+
hidden_states = torch.where(attention_mask, hidden_states, 0).transpose(1, 2)
|
| 403 |
+
if self.out_proj:
|
| 404 |
+
hidden_states = self.out_proj(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
|
| 405 |
+
if not output_hidden_states:
|
| 406 |
+
return hidden_states, output_length
|
| 407 |
+
return hidden_states, output_length, all_hidden
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
# Note: The other helper classes like STFT, ISTFT, Vocos, VectorQuantize, etc.,
|
| 411 |
+
# would be placed here. For brevity, they are omitted but are required dependencies.
|
| 412 |
+
# Assuming they are defined in the same way as the user provided code.
|
| 413 |
+
# The code below will assume these classes are defined in the current scope.
|
| 414 |
+
# ... [Paste all other helper classes here] ...
|
| 415 |
+
class ISTFT(nn.Module):
|
| 416 |
+
def __init__(self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"):
|
| 417 |
+
super().__init__()
|
| 418 |
+
if padding not in ["center", "same"]:
|
| 419 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
| 420 |
+
self.padding, self.n_fft, self.hop_length, self.win_length = padding, n_fft, hop_length, win_length
|
| 421 |
+
self.register_buffer("window", torch.hann_window(win_length))
|
| 422 |
+
|
| 423 |
+
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
| 424 |
+
if self.padding == "center":
|
| 425 |
+
return torch.istft(spec, self.n_fft, self.hop_length, self.win_length, self.window, center=True)
|
| 426 |
+
elif self.padding == "same":
|
| 427 |
+
pad = (self.win_length - self.hop_length) // 2
|
| 428 |
+
else:
|
| 429 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
| 430 |
+
B, N, T = spec.shape
|
| 431 |
+
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") * self.window[None, :, None]
|
| 432 |
+
output_size = (T - 1) * self.hop_length + self.win_length
|
| 433 |
+
|
| 434 |
+
y = F.fold(ifft, (1, output_size), (1, self.win_length), stride=(1, self.hop_length))[:, 0, 0, pad:-pad]
|
| 435 |
+
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
|
| 436 |
+
window_envelope = torch.nn.functional.fold(
|
| 437 |
+
window_sq,
|
| 438 |
+
output_size=(1, output_size),
|
| 439 |
+
kernel_size=(1, self.win_length),
|
| 440 |
+
stride=(1, self.hop_length),
|
| 441 |
+
).squeeze()[pad:-pad]
|
| 442 |
+
assert (window_envelope > 1e-11).all()
|
| 443 |
+
return y / window_envelope
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class FourierHead(nn.Module):
|
| 447 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 448 |
+
raise NotImplementedError("Subclasses must implement the forward method.")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
class ISTFTHead(FourierHead):
|
| 452 |
+
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
|
| 453 |
+
super().__init__()
|
| 454 |
+
self.out = nn.Linear(dim, n_fft + 2)
|
| 455 |
+
self.istft = ISTFT(n_fft, hop_length, n_fft, padding)
|
| 456 |
+
|
| 457 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 458 |
+
x = self.out(x).transpose(1, 2)
|
| 459 |
+
mag, p = x.chunk(2, dim=1)
|
| 460 |
+
mag = torch.exp(mag).clip(max=1e2)
|
| 461 |
+
s = mag.float() * (torch.cos(p).float() + 1j * torch.sin(p).float())
|
| 462 |
+
return self.istft(s).to(x.dtype)
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
class AdaLayerNorm(nn.Module):
|
| 466 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
|
| 467 |
+
super().__init__()
|
| 468 |
+
self.eps, self.dim = eps, embedding_dim
|
| 469 |
+
self.scale = nn.Embedding(num_embeddings, embedding_dim)
|
| 470 |
+
self.shift = nn.Embedding(num_embeddings, embedding_dim)
|
| 471 |
+
torch.nn.init.ones_(self.scale.weight)
|
| 472 |
+
torch.nn.init.zeros_(self.shift.weight)
|
| 473 |
+
|
| 474 |
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
|
| 475 |
+
scale, shift = self.scale(cond_embedding_id), self.shift(cond_embedding_id)
|
| 476 |
+
x = F.layer_norm(x, (self.dim,), eps=self.eps)
|
| 477 |
+
return x * scale + shift
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
class ConvNeXtBlock(nn.Module):
|
| 481 |
+
def __init__(self, dim, intermediate_dim, layer_scale_init_value, adanorm_num_embeddings=None):
|
| 482 |
+
super().__init__()
|
| 483 |
+
self.dwconv = nn.Conv1d(dim, dim, 7, 1, 3, groups=dim)
|
| 484 |
+
self.adanorm = adanorm_num_embeddings is not None
|
| 485 |
+
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim) if self.adanorm else nn.LayerNorm(dim, eps=1e-6)
|
| 486 |
+
self.pwconv1 = nn.Linear(dim, intermediate_dim)
|
| 487 |
+
self.act = nn.GELU()
|
| 488 |
+
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
| 489 |
+
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None
|
| 490 |
+
|
| 491 |
+
def forward(self, x, cond_embedding_id=None):
|
| 492 |
+
res = x
|
| 493 |
+
x = self.dwconv(x).transpose(1, 2)
|
| 494 |
+
x = self.norm(x, cond_embedding_id) if self.adanorm else self.norm(x)
|
| 495 |
+
x = self.pwconv2(self.act(self.pwconv1(x)))
|
| 496 |
+
if self.gamma is not None:
|
| 497 |
+
x = self.gamma * x
|
| 498 |
+
x = res + x.transpose(1, 2)
|
| 499 |
+
return x
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
class Backbone(nn.Module):
|
| 503 |
+
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 504 |
+
raise NotImplementedError("Subclasses must implement the forward method.")
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
class VocosBackbone(Backbone):
|
| 508 |
+
def __init__(self, input_channels, dim, intermediate_dim, num_layers, layer_scale_init_value=None, adanorm_num_embeddings=None):
|
| 509 |
+
super().__init__()
|
| 510 |
+
self.input_channels, self.embed = input_channels, nn.Conv1d(input_channels, dim, 7, 1, 3)
|
| 511 |
+
self.adanorm = adanorm_num_embeddings is not None
|
| 512 |
+
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim) if self.adanorm else nn.LayerNorm(dim, eps=1e-6)
|
| 513 |
+
self.convnext = nn.ModuleList([ConvNeXtBlock(dim, intermediate_dim, layer_scale_init_value or 1/num_layers, adanorm_num_embeddings) for _ in range(num_layers)])
|
| 514 |
+
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
|
| 515 |
+
self.apply(self._init_weights)
|
| 516 |
+
|
| 517 |
+
def _init_weights(self, m):
|
| 518 |
+
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
| 519 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
| 520 |
+
if m.bias is not None:
|
| 521 |
+
nn.init.constant_(m.bias, 0)
|
| 522 |
+
|
| 523 |
+
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 524 |
+
x = self.embed(x).transpose(1, 2)
|
| 525 |
+
x = self.norm(x, kwargs.get("bandwidth_id")) if self.adanorm else self.norm(x)
|
| 526 |
+
x = x.transpose(1, 2)
|
| 527 |
+
for block in self.convnext:
|
| 528 |
+
x = block(x, kwargs.get("bandwidth_id"))
|
| 529 |
+
return self.final_layer_norm(x.transpose(1, 2))
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
class Vocos(nn.Module):
|
| 533 |
+
def __init__(self, input_channels=128, dim=512, intermediate_dim=4096, num_layers=30, n_fft=640, hop_size=160, padding="same", adanorm_num_embeddings=None):
|
| 534 |
+
super().__init__()
|
| 535 |
+
self.backbone = VocosBackbone(input_channels, dim, intermediate_dim, num_layers, adanorm_num_embeddings=adanorm_num_embeddings)
|
| 536 |
+
self.head = ISTFTHead(dim, n_fft, hop_size, padding)
|
| 537 |
+
self.hop_size = hop_size
|
| 538 |
+
|
| 539 |
+
def forward(self, x, input_length):
|
| 540 |
+
x = self.backbone(x)
|
| 541 |
+
x = self.head(x)
|
| 542 |
+
return x[:, None, :], input_length * self.hop_size
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
def WNConv1d(*args, **kwargs):
|
| 546 |
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
def ema_inplace(moving_avg, new, decay):
|
| 550 |
+
moving_avg.data.mul_(decay).add_(new.float(), alpha=(1 - decay))
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
def sample_vectors(samples, num):
|
| 554 |
+
num_samples, device = samples.shape[0], samples.device
|
| 555 |
+
indices = torch.randperm(num_samples, device=device)[:num] if num_samples >= num else torch.randint(0, num_samples, (num,), device=device)
|
| 556 |
+
return samples[indices].float()
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
def kmeans(samples, num_clusters, num_iters=10):
|
| 560 |
+
dim, means = samples.shape[-1], sample_vectors(samples, num_clusters).float()
|
| 561 |
+
for _ in range(num_iters):
|
| 562 |
+
dists = -(samples.float().pow(2).sum(1, keepdim=True) - 2 * samples.float() @ means.t() + means.t().float().pow(2).sum(0, keepdim=True))
|
| 563 |
+
buckets = dists.max(dim=-1).indices
|
| 564 |
+
bins = torch.bincount(buckets, minlength=num_clusters)
|
| 565 |
+
zero_mask = bins == 0
|
| 566 |
+
bins_min_clamped = bins.masked_fill(zero_mask, 1)
|
| 567 |
+
new_means = buckets.new_zeros(num_clusters, dim, dtype=torch.float32).scatter_add_(0, buckets.unsqueeze(1).expand(-1, dim), samples.float()) / bins_min_clamped[..., None]
|
| 568 |
+
means = torch.where(zero_mask[..., None], means, new_means)
|
| 569 |
+
dists = -(samples.float().pow(2).sum(1, keepdim=True) - 2 * samples.float() @ means.t() + means.t().float().pow(2).sum(0, keepdim=True))
|
| 570 |
+
return means, torch.bincount(dists.max(dim=-1).indices, minlength=num_clusters).float()
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
class VectorQuantize(nn.Module):
|
| 574 |
+
def __init__(self, input_dim, codebook_size, codebook_dim, commitment=1.0, decay=0.99, epsilon=1e-5, threshold_ema_dead=2, kmeans_init=True, kmeans_iters=10):
|
| 575 |
+
super().__init__()
|
| 576 |
+
self.input_dim, self.codebook_size, self.codebook_dim = input_dim, codebook_size, codebook_dim
|
| 577 |
+
self.commitment, self.decay, self.epsilon, self.threshold_ema_dead = commitment, decay, epsilon, threshold_ema_dead
|
| 578 |
+
self.kmeans_init, self.kmeans_iters = kmeans_init, kmeans_iters
|
| 579 |
+
self.in_project = WNConv1d(input_dim, codebook_dim, 1) if input_dim != codebook_dim else nn.Identity()
|
| 580 |
+
self.out_project = WNConv1d(codebook_dim, input_dim, 1) if codebook_dim != input_dim else nn.Identity()
|
| 581 |
+
self.register_buffer("codebook", torch.zeros(codebook_size, codebook_dim) if kmeans_init else torch.randn(codebook_size, codebook_dim))
|
| 582 |
+
self.register_buffer("inited", torch.tensor(not kmeans_init, dtype=torch.bool))
|
| 583 |
+
self.register_buffer("cluster_size", torch.zeros(codebook_size))
|
| 584 |
+
self.register_buffer("embed_avg", self.codebook.clone())
|
| 585 |
+
|
| 586 |
+
def ema_update(self, encodings, embed_onehot):
|
| 587 |
+
encodings, embed_onehot = encodings.float(), embed_onehot.float()
|
| 588 |
+
cluster_size_new, embed_sum = embed_onehot.sum(0), encodings.t() @ embed_onehot
|
| 589 |
+
if dist.is_initialized():
|
| 590 |
+
dist.all_reduce(cluster_size_new)
|
| 591 |
+
dist.all_reduce(embed_sum)
|
| 592 |
+
ema_inplace(self.cluster_size, cluster_size_new, self.decay)
|
| 593 |
+
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
|
| 594 |
+
cluster_size = (self.cluster_size + self.epsilon) / (self.cluster_size.sum() + self.codebook_size * self.epsilon) * self.cluster_size.sum()
|
| 595 |
+
self.codebook.copy_(self.embed_avg / cluster_size.unsqueeze(1))
|
| 596 |
+
|
| 597 |
+
def replace_dead_codes(self, encodings):
|
| 598 |
+
if self.threshold_ema_dead == 0: return
|
| 599 |
+
dead_mask = self.cluster_size < self.threshold_ema_dead
|
| 600 |
+
if dead_mask.any():
|
| 601 |
+
samples = sample_vectors(encodings.float(), self.codebook_size) if not dist.is_initialized() or dist.get_rank() == 0 else torch.zeros_like(self.codebook)
|
| 602 |
+
if dist.is_initialized(): dist.broadcast(samples, src=0)
|
| 603 |
+
self.codebook[dead_mask] = samples[:dead_mask.sum()].to(self.codebook.dtype)
|
| 604 |
+
|
| 605 |
+
def init_codebook(self, encodings):
|
| 606 |
+
if self.inited.item(): return
|
| 607 |
+
if not dist.is_initialized() or dist.get_rank() == 0:
|
| 608 |
+
embed, cluster_sizes = kmeans(encodings.float(), self.codebook_size, self.kmeans_iters)
|
| 609 |
+
else:
|
| 610 |
+
embed, cluster_sizes = torch.zeros(self.codebook_size, self.codebook_dim, device=encodings.device), torch.zeros(self.codebook_size, device=encodings.device)
|
| 611 |
+
if dist.is_initialized():
|
| 612 |
+
dist.broadcast(embed, src=0)
|
| 613 |
+
dist.broadcast(cluster_sizes, src=0)
|
| 614 |
+
self.codebook.copy_(embed)
|
| 615 |
+
self.embed_avg.copy_(embed.clone())
|
| 616 |
+
self.cluster_size.copy_(cluster_sizes)
|
| 617 |
+
self.inited.fill_(True)
|
| 618 |
+
|
| 619 |
+
def forward(self, z):
|
| 620 |
+
z_e = self.in_project(z.float())
|
| 621 |
+
encodings = rearrange(z_e, "b d t -> (b t) d")
|
| 622 |
+
if self.kmeans_init and not self.inited.item(): self.init_codebook(encodings)
|
| 623 |
+
dist = encodings.pow(2).sum(1, keepdim=True) - 2 * encodings @ self.codebook.float().t() + self.codebook.float().pow(2).sum(1, keepdim=True).t()
|
| 624 |
+
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=z.size(0))
|
| 625 |
+
z_q = self.decode_code(indices)
|
| 626 |
+
commit_loss = F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) * self.commitment
|
| 627 |
+
if self.training and torch.is_grad_enabled():
|
| 628 |
+
self.ema_update(encodings, F.one_hot(indices.view(-1), self.codebook_size))
|
| 629 |
+
self.replace_dead_codes(encodings)
|
| 630 |
+
z_q = self.out_project(z_e + (z_q - z_e).detach())
|
| 631 |
+
return z_q, commit_loss, torch.tensor(0.0, device=z.device), indices, z_e
|
| 632 |
+
|
| 633 |
+
def decode_code(self, embed_id):
|
| 634 |
+
return F.embedding(embed_id, self.codebook.float()).transpose(1, 2)
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
class ResidualVQ(nn.Module):
|
| 638 |
+
def __init__(
|
| 639 |
+
self,
|
| 640 |
+
input_dim: int = 1280,
|
| 641 |
+
rvq_dim: int = None,
|
| 642 |
+
output_dim: int = None,
|
| 643 |
+
num_quantizers: int = 32,
|
| 644 |
+
codebook_size: int = 1024,
|
| 645 |
+
codebook_dim: int = 8,
|
| 646 |
+
quantizer_dropout: float = 0.5,
|
| 647 |
+
skip_rvq_ratio: float = 0.0,
|
| 648 |
+
vq_config: VectorQuantizerConfig = None,
|
| 649 |
+
**kwargs
|
| 650 |
+
):
|
| 651 |
+
super().__init__()
|
| 652 |
+
self.input_dim, self.rvq_dim, self.output_dim = input_dim, rvq_dim, output_dim or input_dim
|
| 653 |
+
self.num_quantizers, self.codebook_size, self.codebook_dim = num_quantizers, codebook_size, codebook_dim
|
| 654 |
+
self.quantizer_dropout, self.skip_rvq_ratio = quantizer_dropout, skip_rvq_ratio
|
| 655 |
+
self.input_proj = WNConv1d(input_dim, rvq_dim, 1) if input_dim != rvq_dim else nn.Identity()
|
| 656 |
+
self.output_proj = WNConv1d(rvq_dim, self.output_dim, 1) if rvq_dim != self.output_dim else nn.Identity()
|
| 657 |
+
if vq_config is None:
|
| 658 |
+
vq_config = VectorQuantizerConfig()
|
| 659 |
+
quantizer_kwargs = asdict(vq_config)
|
| 660 |
+
self.quantizers = nn.ModuleList([VectorQuantize(rvq_dim, codebook_size, codebook_dim, **quantizer_kwargs, **kwargs) for _ in range(num_quantizers)])
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
def forward(self, z, input_length, n_quantizers: int = None):
|
| 664 |
+
z = self.input_proj(z)
|
| 665 |
+
|
| 666 |
+
with torch.autocast('cuda', enabled=False):
|
| 667 |
+
batch_size, _, max_time = z.shape
|
| 668 |
+
device = z.device
|
| 669 |
+
mask = torch.arange(max_time, device=device).expand(batch_size, max_time) < input_length.unsqueeze(1)
|
| 670 |
+
|
| 671 |
+
quantized_out = torch.zeros_like(z)
|
| 672 |
+
residual = z.clone().float()
|
| 673 |
+
|
| 674 |
+
all_commit_losses = []
|
| 675 |
+
all_indices = []
|
| 676 |
+
all_quantized = []
|
| 677 |
+
|
| 678 |
+
# --- Complexity Reduction Start ---
|
| 679 |
+
# 1. Extracted logic for determining quantizer numbers and skip mask
|
| 680 |
+
n_q_tensor = self._get_n_quantizers_tensor(batch_size, device, n_quantizers)
|
| 681 |
+
skip_mask = self._get_skip_mask(batch_size, device)
|
| 682 |
+
# --- Complexity Reduction End ---
|
| 683 |
+
|
| 684 |
+
max_q_to_run = self.num_quantizers if self.training else (n_quantizers or self.num_quantizers)
|
| 685 |
+
|
| 686 |
+
for i, quantizer in enumerate(self.quantizers[:max_q_to_run]):
|
| 687 |
+
# Create a mask for which batch items are active in this iteration
|
| 688 |
+
active_in_iteration_mask = (i < n_q_tensor)
|
| 689 |
+
|
| 690 |
+
# Skip quantization for items that are not active
|
| 691 |
+
if not active_in_iteration_mask.any():
|
| 692 |
+
# If no items are active, we can add placeholders and continue
|
| 693 |
+
# This branch is less common but handles the case where all items have dropped out
|
| 694 |
+
all_commit_losses.append(torch.tensor(0.0, device=device))
|
| 695 |
+
all_indices.append(torch.zeros(batch_size, max_time, dtype=torch.long, device=device))
|
| 696 |
+
all_quantized.append(torch.zeros_like(z))
|
| 697 |
+
continue
|
| 698 |
+
|
| 699 |
+
masked_residual = residual * mask.unsqueeze(1)
|
| 700 |
+
|
| 701 |
+
# --- Complexity Reduction Start ---
|
| 702 |
+
# 2. Extracted quantization step logic
|
| 703 |
+
z_q_i, commit_loss_i, indices_i = self._quantize_step(quantizer, masked_residual, skip_mask)
|
| 704 |
+
# --- Complexity Reduction End ---
|
| 705 |
+
|
| 706 |
+
# Create a mask for updating tensors (batch items active in this iteration AND within valid length)
|
| 707 |
+
update_mask = (active_in_iteration_mask.view(-1, 1, 1) & mask.unsqueeze(1))
|
| 708 |
+
|
| 709 |
+
quantized_out += z_q_i * update_mask
|
| 710 |
+
residual -= z_q_i * update_mask
|
| 711 |
+
|
| 712 |
+
# Calculate average commitment loss only for active items
|
| 713 |
+
commit_loss_i = commit_loss_i[active_in_iteration_mask].mean() if active_in_iteration_mask.any() else torch.tensor(0.0, device=device)
|
| 714 |
+
|
| 715 |
+
all_commit_losses.append(commit_loss_i)
|
| 716 |
+
all_indices.append(indices_i)
|
| 717 |
+
all_quantized.append(z_q_i)
|
| 718 |
+
|
| 719 |
+
# Pad the outputs if the loop was exited early (e.g., in eval mode with n_quantizers)
|
| 720 |
+
num_loops_done = len(all_commit_losses)
|
| 721 |
+
if num_loops_done < self.num_quantizers:
|
| 722 |
+
remaining = self.num_quantizers - num_loops_done
|
| 723 |
+
all_commit_losses.extend([torch.tensor(0.0, device=device)] * remaining)
|
| 724 |
+
all_indices.extend([torch.zeros(batch_size, max_time, dtype=torch.long, device=device)] * remaining)
|
| 725 |
+
all_quantized.extend([torch.zeros_like(z)] * remaining)
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
quantized_out = self.output_proj(quantized_out)
|
| 729 |
+
all_indices_tensor = torch.stack(all_indices)
|
| 730 |
+
all_commit_losses_tensor = torch.stack(all_commit_losses)
|
| 731 |
+
all_quantized_tensor = torch.stack(all_quantized)
|
| 732 |
+
|
| 733 |
+
return (
|
| 734 |
+
quantized_out,
|
| 735 |
+
all_indices_tensor,
|
| 736 |
+
all_commit_losses_tensor,
|
| 737 |
+
all_quantized_tensor,
|
| 738 |
+
input_length,
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
def decode_codes(self, codes):
|
| 742 |
+
nq, B, T = codes.shape
|
| 743 |
+
emb = torch.zeros(B, self.rvq_dim, T, device=codes.device, dtype=torch.float32)
|
| 744 |
+
for i, quantizer in enumerate(self.quantizers[:nq]):
|
| 745 |
+
emb += quantizer.decode_code(codes[i])
|
| 746 |
+
return self.output_proj(emb)
|
| 747 |
+
|
| 748 |
+
def _get_n_quantizers_tensor(self, batch_size: int, device: torch.device, n_quantizers_override: Optional[int] = None) -> torch.Tensor:
|
| 749 |
+
"""
|
| 750 |
+
Determines the number of quantizers to use for each item in the batch,
|
| 751 |
+
applying dropout during training.
|
| 752 |
+
"""
|
| 753 |
+
# If not training or dropout is disabled, use the override or default number of quantizers
|
| 754 |
+
is_training = self.training and torch.is_grad_enabled()
|
| 755 |
+
if not is_training or self.quantizer_dropout == 0:
|
| 756 |
+
num_q = n_quantizers_override or self.num_quantizers
|
| 757 |
+
return torch.full((batch_size,), num_q, dtype=torch.long, device=device)
|
| 758 |
+
|
| 759 |
+
# During training, apply quantizer dropout
|
| 760 |
+
n_q_tensor = torch.full((batch_size,), self.num_quantizers, device=device)
|
| 761 |
+
n_dropout = int(batch_size * self.quantizer_dropout)
|
| 762 |
+
if n_dropout > 0:
|
| 763 |
+
dropout_indices = torch.randperm(batch_size, device=device)[:n_dropout]
|
| 764 |
+
dropout_values = torch.randint(1, self.num_quantizers + 1, (n_dropout,), device=device)
|
| 765 |
+
n_q_tensor[dropout_indices] = dropout_values
|
| 766 |
+
|
| 767 |
+
return n_q_tensor
|
| 768 |
+
|
| 769 |
+
def _get_skip_mask(self, batch_size: int, device: torch.device) -> Optional[torch.Tensor]:
|
| 770 |
+
"""Generates a mask for skipping RVQ during training if skip_rvq_ratio > 0."""
|
| 771 |
+
is_training = self.training and torch.is_grad_enabled()
|
| 772 |
+
if not is_training or self.skip_rvq_ratio <= 0:
|
| 773 |
+
return None
|
| 774 |
+
|
| 775 |
+
skip_mask = torch.rand(batch_size, device=device) < self.skip_rvq_ratio
|
| 776 |
+
# Ensure at least one sample is not skipped to avoid errors in modules like DDP
|
| 777 |
+
if skip_mask.all():
|
| 778 |
+
skip_mask[0] = False
|
| 779 |
+
return skip_mask
|
| 780 |
+
|
| 781 |
+
def _quantize_step(self, quantizer, residual, skip_mask):
|
| 782 |
+
"""Helper to perform one step of quantization, handling the skip logic."""
|
| 783 |
+
# The main logic is for non-skipped samples
|
| 784 |
+
z_q_i, commit_loss_i, _, indices_i, z_e_i = quantizer(residual.float())
|
| 785 |
+
|
| 786 |
+
# If skipping is active, overwrite the results for the masked samples
|
| 787 |
+
if skip_mask is not None:
|
| 788 |
+
# For skipped samples, the "quantized" output is the residual itself
|
| 789 |
+
# and the loss is zero.
|
| 790 |
+
skip_mask_expanded = skip_mask.view(-1, 1, 1)
|
| 791 |
+
z_q_i = torch.where(skip_mask_expanded, residual, z_q_i)
|
| 792 |
+
commit_loss_i = torch.where(skip_mask, torch.zeros_like(commit_loss_i), commit_loss_i)
|
| 793 |
+
|
| 794 |
+
return z_q_i, commit_loss_i, indices_i
|
| 795 |
+
|
| 796 |
+
|
| 797 |
+
|
| 798 |
+
# ----------------------------------------------- #
|
| 799 |
+
# PreTrainedModel Base Class #
|
| 800 |
+
# ----------------------------------------------- #
|
| 801 |
+
class XYTokenizerPreTrainedModel(PreTrainedAudioTokenizerBase):
|
| 802 |
+
"""
|
| 803 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 804 |
+
models.
|
| 805 |
+
"""
|
| 806 |
+
config_class = XYTokenizerConfig
|
| 807 |
+
base_model_prefix = "xy_tokenizer"
|
| 808 |
+
main_input_name = "input_values"
|
| 809 |
+
_supports_grad_checkpointing = True
|
| 810 |
+
|
| 811 |
+
def _init_weights(self, module):
|
| 812 |
+
"""Initialize the weights."""
|
| 813 |
+
if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
|
| 814 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 815 |
+
if module.bias is not None:
|
| 816 |
+
module.bias.data.zero_()
|
| 817 |
+
elif isinstance(module, nn.Embedding):
|
| 818 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 819 |
+
if module.padding_idx is not None:
|
| 820 |
+
module.weight.data[module.padding_idx].zero_()
|
| 821 |
+
|
| 822 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 823 |
+
if isinstance(module, (OmniAudioEncoder, OmniAudioDecoder, Transformer)):
|
| 824 |
+
module.gradient_checkpointing = value
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
# ----------------------------------------------- #
|
| 828 |
+
# Main Model Class #
|
| 829 |
+
# ----------------------------------------------- #
|
| 830 |
+
class XYTokenizerModel(XYTokenizerPreTrainedModel):
|
| 831 |
+
def __init__(self, config: XYTokenizerConfig):
|
| 832 |
+
super().__init__(config)
|
| 833 |
+
# Reconstruct the nested parameter dictionaries from the flat config
|
| 834 |
+
# This is a bit of a boilerplate but necessary to reuse the original module code.
|
| 835 |
+
# A more integrated approach would refactor the sub-modules to accept the flat config directly.
|
| 836 |
+
self.config = config
|
| 837 |
+
|
| 838 |
+
params = config.params
|
| 839 |
+
self.semantic_encoder = OmniAudioEncoder(**params['semantic_encoder_kwargs'])
|
| 840 |
+
self.semantic_encoder_adapter = Transformer(**params['semantic_encoder_adapter_kwargs'])
|
| 841 |
+
self.acoustic_encoder = OmniAudioEncoder(**params['acoustic_encoder_kwargs'])
|
| 842 |
+
self.pre_rvq_adapter = Transformer(**params['pre_rvq_adapter_kwargs'])
|
| 843 |
+
self.downsample = ResidualDownConv(**params['downsample_kwargs'])
|
| 844 |
+
self.quantizer = ResidualVQ(**params['quantizer_kwargs'])
|
| 845 |
+
self.post_rvq_adapter = Transformer(**params['post_rvq_adapter_kwargs'])
|
| 846 |
+
self.upsample = UpConv(**params['upsample_kwargs'])
|
| 847 |
+
self.acoustic_decoder = OmniAudioDecoder(**params['acoustic_decoder_kwargs'])
|
| 848 |
+
self.enhanced_vocos = Vocos(**params['vocos_kwargs'])
|
| 849 |
+
self.feature_extractor = params['feature_extractor_kwargs']
|
| 850 |
+
# Store some config values for easier access
|
| 851 |
+
self.encoder_downsample_rate = config.encoder_downsample_rate
|
| 852 |
+
self.nq = params['quantizer_kwargs']['num_quantizers']
|
| 853 |
+
|
| 854 |
+
# Initialize weights and apply final processing
|
| 855 |
+
self.post_init()
|
| 856 |
+
|
| 857 |
+
def _get_feat_extract_output_lengths(self, input_lengths: Optional[torch.Tensor]):
|
| 858 |
+
"""
|
| 859 |
+
Computes the output lengths of the feature extractor.
|
| 860 |
+
"""
|
| 861 |
+
def _get_out_len(in_len):
|
| 862 |
+
return (in_len - self.feature_extractor["n_fft"]) // self.feature_extractor["hop_length"] + 1
|
| 863 |
+
|
| 864 |
+
if input_lengths is None:
|
| 865 |
+
return None
|
| 866 |
+
|
| 867 |
+
return torch.tensor([_get_out_len(l) for l in input_lengths], device=self.device)
|
| 868 |
+
|
| 869 |
+
def scale_window_size(self, boundaries, scaling_factor):
|
| 870 |
+
scaling_range = []
|
| 871 |
+
scaling_boundaries = []
|
| 872 |
+
for left_boundary, right_boundary in boundaries:
|
| 873 |
+
scaling_left_boundary = left_boundary// scaling_factor
|
| 874 |
+
scaling_right_boundary = right_boundary // scaling_factor
|
| 875 |
+
scaling_range.append(scaling_right_boundary-scaling_left_boundary)
|
| 876 |
+
scaling_boundaries.append(slice(scaling_left_boundary, scaling_right_boundary))
|
| 877 |
+
return scaling_range, scaling_boundaries
|
| 878 |
+
|
| 879 |
+
@torch.inference_mode
|
| 880 |
+
def encode(
|
| 881 |
+
self,
|
| 882 |
+
features: Union[BatchFeature, ExtractorIterator],
|
| 883 |
+
n_quantizers: Optional[int] = None,
|
| 884 |
+
return_dict: Optional[bool] = True,
|
| 885 |
+
) -> Union[XYTokenizerEncodeOutput, Tuple]:
|
| 886 |
+
r"""
|
| 887 |
+
Encodes the input audio waveform into discrete codes.
|
| 888 |
+
|
| 889 |
+
Args:
|
| 890 |
+
features (`BatchFeature` or `ExtractorIterator`):
|
| 891 |
+
A single batch of features or an iterator that yields batches of chunks for long audio files.
|
| 892 |
+
The iterator is expected to yield `BatchFeature` dicts which must contain a `sequence_ids`
|
| 893 |
+
tensor of shape `(batch_size,)` mapping each item in the chunk to its original sequence.
|
| 894 |
+
n_quantizers (`int`, *optional*):
|
| 895 |
+
The number of quantizers to use. If not specified, all quantizers are used.
|
| 896 |
+
return_dict (`bool`, *optional*):
|
| 897 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 898 |
+
Returns:
|
| 899 |
+
[`XYTokenizerEncodeOutput`] or `tuple(torch.FloatTensor)`
|
| 900 |
+
"""
|
| 901 |
+
assert isinstance(features, (BatchFeature, ExtractorIterator))
|
| 902 |
+
# Handle single batch case
|
| 903 |
+
if isinstance(features, BatchFeature):
|
| 904 |
+
return self._encode(features, n_quantizers, return_dict)
|
| 905 |
+
|
| 906 |
+
# Handle streaming/chunked case
|
| 907 |
+
else:
|
| 908 |
+
# Use a dictionary to group chunks by their original sequence ID
|
| 909 |
+
encodings = defaultdict(lambda: {"zq": [], "codes": [], "length": 0})
|
| 910 |
+
commit_losses = []
|
| 911 |
+
total_frames = 0
|
| 912 |
+
|
| 913 |
+
# 1. Iterate through chunks and store intermediate results
|
| 914 |
+
for chunk_features in features:
|
| 915 |
+
# Always use return_dict=True for easier access to named outputs
|
| 916 |
+
chunk_output = self._encode(chunk_features, n_quantizers, return_dict=True)
|
| 917 |
+
valid_code_lengths, valid_code_ranges = self.scale_window_size(chunk_features["input_lengths"], self.encoder_downsample_rate)
|
| 918 |
+
|
| 919 |
+
# Accumulate weighted commit loss
|
| 920 |
+
chunk_length = chunk_output.codes_lengths.sum().item()
|
| 921 |
+
valid_chunk_length = sum(valid_code_lengths)
|
| 922 |
+
if chunk_output.commit_loss is not None and valid_chunk_length > 0:
|
| 923 |
+
commit_loss = chunk_output.commit_loss / chunk_length * valid_chunk_length
|
| 924 |
+
commit_losses.append((commit_loss.cpu(), valid_chunk_length))
|
| 925 |
+
total_frames += valid_chunk_length
|
| 926 |
+
|
| 927 |
+
# Group results by original sequence ID
|
| 928 |
+
for i, seq_id in enumerate(chunk_features["chunk_seq_no"].tolist()):
|
| 929 |
+
valid_code_range = valid_code_ranges[i]
|
| 930 |
+
if valid_code_range.stop > 0:
|
| 931 |
+
encodings[seq_id]["zq"].append(chunk_output.quantized_representation[i:i+1, :, valid_code_range])
|
| 932 |
+
encodings[seq_id]["codes"].append(chunk_output.audio_codes[:, i:i+1, valid_code_range])
|
| 933 |
+
# Add the valid length of this chunk to the total for this sequence
|
| 934 |
+
encodings[seq_id]["length"] += valid_code_lengths[i]
|
| 935 |
+
|
| 936 |
+
final_outputs = []
|
| 937 |
+
for seq_id, seq_data in encodings.items():
|
| 938 |
+
final_outputs.append({
|
| 939 |
+
"zq": torch.cat(seq_data["zq"], dim=2),
|
| 940 |
+
"codes": torch.cat(seq_data["codes"], dim=2),
|
| 941 |
+
"length": seq_data["length"]
|
| 942 |
+
})
|
| 943 |
+
|
| 944 |
+
# 3. Pad all sequences to the same length and stack into a batch
|
| 945 |
+
max_len = max(seq["zq"].shape[2] for seq in final_outputs)
|
| 946 |
+
|
| 947 |
+
batch_zq = []
|
| 948 |
+
batch_codes = []
|
| 949 |
+
batch_lengths = []
|
| 950 |
+
|
| 951 |
+
for seq in final_outputs:
|
| 952 |
+
pad_amount = max_len - seq["zq"].shape[2]
|
| 953 |
+
# Pad on the right side of the last dimension (time)
|
| 954 |
+
padded_zq = F.pad(seq["zq"], (0, pad_amount))
|
| 955 |
+
padded_codes = F.pad(seq["codes"], (0, pad_amount))
|
| 956 |
+
|
| 957 |
+
batch_zq.append(padded_zq)
|
| 958 |
+
batch_codes.append(padded_codes)
|
| 959 |
+
batch_lengths.append(seq["length"])
|
| 960 |
+
|
| 961 |
+
# Stack the list of tensors into a single batch tensor
|
| 962 |
+
quantized_representation = torch.cat(batch_zq, dim=0)
|
| 963 |
+
audio_codes = torch.cat(batch_codes, dim=0)
|
| 964 |
+
codes_lengths = torch.tensor(batch_lengths, dtype=torch.long, device=self.device)
|
| 965 |
+
|
| 966 |
+
# 4. Calculate final commit loss
|
| 967 |
+
if total_frames > 0:
|
| 968 |
+
# Weighted average of commit losses
|
| 969 |
+
commit_loss = sum(loss * length for loss, length in commit_losses) / total_frames
|
| 970 |
+
commit_loss = commit_loss.to(self.device)
|
| 971 |
+
else:
|
| 972 |
+
commit_loss = torch.tensor(0.0, device=self.device)
|
| 973 |
+
|
| 974 |
+
if not return_dict:
|
| 975 |
+
return (quantized_representation, audio_codes, codes_lengths, commit_loss)
|
| 976 |
+
|
| 977 |
+
return XYTokenizerEncodeOutput(
|
| 978 |
+
quantized_representation=quantized_representation,
|
| 979 |
+
audio_codes=audio_codes,
|
| 980 |
+
codes_lengths=codes_lengths,
|
| 981 |
+
commit_loss=commit_loss,
|
| 982 |
+
overlap_seconds=features.overlap_seconds,
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
def _encode(
|
| 986 |
+
self,
|
| 987 |
+
features: BatchFeature,
|
| 988 |
+
n_quantizers: Optional[int] = None,
|
| 989 |
+
return_dict: Optional[bool] = True,
|
| 990 |
+
) -> Union[XYTokenizerEncodeOutput, Tuple]:
|
| 991 |
+
input_mel = features['input_features'].to(self.device, dtype=self.dtype)
|
| 992 |
+
mel_attention_mask = features['attention_mask'].to(self.device)
|
| 993 |
+
mel_output_length = mel_attention_mask.sum(dim=-1).long()
|
| 994 |
+
|
| 995 |
+
# --- Encoder Path ---
|
| 996 |
+
semantic_encoder_output, semantic_encoder_output_length = self.semantic_encoder(input_mel, mel_output_length)
|
| 997 |
+
semantic_adapter_output, _ = self.semantic_encoder_adapter(semantic_encoder_output, semantic_encoder_output_length)
|
| 998 |
+
acoustic_encoder_output, acoustic_encoder_output_length = self.acoustic_encoder(input_mel, mel_output_length)
|
| 999 |
+
|
| 1000 |
+
concated_channel = torch.cat([semantic_adapter_output, acoustic_encoder_output], dim=1)
|
| 1001 |
+
|
| 1002 |
+
pre_rvq_adapter_output, pre_rvq_adapter_output_length = self.pre_rvq_adapter(concated_channel, acoustic_encoder_output_length)
|
| 1003 |
+
downsample_output, downsample_output_length = self.downsample(pre_rvq_adapter_output, pre_rvq_adapter_output_length)
|
| 1004 |
+
|
| 1005 |
+
n_quantizers = n_quantizers or self.quantizer.num_quantizers
|
| 1006 |
+
zq, codes, vq_loss, _, quantizer_output_length = self.quantizer(downsample_output, downsample_output_length, n_quantizers=n_quantizers)
|
| 1007 |
+
|
| 1008 |
+
if not return_dict:
|
| 1009 |
+
return (zq, codes, quantizer_output_length, vq_loss)
|
| 1010 |
+
|
| 1011 |
+
return XYTokenizerEncodeOutput(
|
| 1012 |
+
quantized_representation=zq,
|
| 1013 |
+
audio_codes=codes,
|
| 1014 |
+
codes_lengths=quantizer_output_length,
|
| 1015 |
+
commit_loss=vq_loss.mean()
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
@torch.inference_mode
|
| 1019 |
+
def decode(
|
| 1020 |
+
self,
|
| 1021 |
+
audio_codes: Union[torch.Tensor, XYTokenizerEncodeOutput],
|
| 1022 |
+
overlap_seconds: int = 10,
|
| 1023 |
+
return_dict: Optional[bool] = True,
|
| 1024 |
+
) -> Union[XYTokenizerDecodeOutput, Tuple]:
|
| 1025 |
+
r"""
|
| 1026 |
+
Decodes discrete codes back into an audio waveform.
|
| 1027 |
+
|
| 1028 |
+
Args:
|
| 1029 |
+
audio_codes (`torch.LongTensor` of shape `(num_codebooks, batch_size, sequence_length)`):
|
| 1030 |
+
The discrete codes from the quantizer for each codebook.
|
| 1031 |
+
codes_lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1032 |
+
The valid length of each sequence in `audio_codes`. If not provided, it's assumed to be the full length.
|
| 1033 |
+
return_dict (`bool`, *optional*):
|
| 1034 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1035 |
+
Returns:
|
| 1036 |
+
[`XYTokenizerDecodeOutput`] or `tuple(torch.FloatTensor)`
|
| 1037 |
+
"""
|
| 1038 |
+
assert not isinstance(audio_codes, tuple), "try to set param `return_dict=True` for `codec.encode()` function"
|
| 1039 |
+
assert isinstance(audio_codes, (torch.Tensor, XYTokenizerEncodeOutput)), \
|
| 1040 |
+
"only accept `torch.Tensor` or `XYTokenizerEncodeOutput` for `codec.decode()` function"
|
| 1041 |
+
if isinstance(audio_codes, XYTokenizerEncodeOutput):
|
| 1042 |
+
audio_codes = audio_codes.audio_codes
|
| 1043 |
+
if hasattr(audio_codes, "overlap_seconds"):
|
| 1044 |
+
overlap_seconds = audio_codes.overlap_seconds
|
| 1045 |
+
if overlap_seconds is None:
|
| 1046 |
+
overlap_seconds = 0
|
| 1047 |
+
chunk_length = self.feature_extractor["chunk_length"]
|
| 1048 |
+
duration_seconds = chunk_length - overlap_seconds
|
| 1049 |
+
chunk_code_length = int(chunk_length * self.feature_extractor["sampling_rate"] // self.config.encoder_downsample_rate) # Maximum code length per chunk
|
| 1050 |
+
duration_code_length = int(duration_seconds * self.feature_extractor["sampling_rate"] // self.config.encoder_downsample_rate) # Valid code length per chunk
|
| 1051 |
+
duration_wav_length = duration_code_length * self.config.decoder_upsample_rate # Valid waveform length per chunk
|
| 1052 |
+
|
| 1053 |
+
# Get maximum code length
|
| 1054 |
+
batch_size = audio_codes.shape[1]
|
| 1055 |
+
codes_list = [audio_codes[:, i, :] for i in range(batch_size)]
|
| 1056 |
+
max_code_length = max(codes.shape[-1] for codes in codes_list)
|
| 1057 |
+
batch_size = len(codes_list)
|
| 1058 |
+
codes_tensor = torch.zeros(self.nq, batch_size, max_code_length, device=self.device, dtype=torch.long)
|
| 1059 |
+
code_lengths = torch.zeros(batch_size, dtype=torch.long, device=self.device)
|
| 1060 |
+
for i, codes in enumerate(codes_list):
|
| 1061 |
+
codes_tensor[:, i, :codes.shape[-1]] = codes.to(self.device)
|
| 1062 |
+
code_lengths[i] = codes.shape[-1] # (B,)
|
| 1063 |
+
|
| 1064 |
+
# Calculate number of chunks needed
|
| 1065 |
+
max_chunks = (max_code_length + duration_code_length - 1) // duration_code_length
|
| 1066 |
+
wav_list = []
|
| 1067 |
+
|
| 1068 |
+
# Process the entire batch in chunks
|
| 1069 |
+
for chunk_idx in range(max_chunks):
|
| 1070 |
+
start = chunk_idx * duration_code_length
|
| 1071 |
+
end = min(start + chunk_code_length, max_code_length)
|
| 1072 |
+
chunk_codes = codes_tensor[:, :, start:end] # (nq, B, T')
|
| 1073 |
+
chunk_code_lengths = torch.clamp(code_lengths - start, 0, end - start) # (B,)
|
| 1074 |
+
|
| 1075 |
+
# Skip empty chunks
|
| 1076 |
+
if chunk_code_lengths.max() == 0:
|
| 1077 |
+
continue
|
| 1078 |
+
|
| 1079 |
+
# Decode
|
| 1080 |
+
result = self._decode(chunk_codes, chunk_code_lengths) # {"y": (B, 1, T'), "output_length": (B,)}
|
| 1081 |
+
chunk_wav = result["audio_values"] # (B, 1, T')
|
| 1082 |
+
chunk_wav_lengths = result["output_length"] # (B,)
|
| 1083 |
+
|
| 1084 |
+
# Extract valid portion
|
| 1085 |
+
valid_wav_lengths = torch.clamp(chunk_wav_lengths, 0, duration_wav_length) # (B,)
|
| 1086 |
+
valid_chunk_wav = torch.zeros(batch_size, 1, duration_wav_length, device=self.device)
|
| 1087 |
+
for b in range(batch_size):
|
| 1088 |
+
if valid_wav_lengths[b] > 0:
|
| 1089 |
+
valid_chunk_wav[b, :, :valid_wav_lengths[b]] = chunk_wav[b, :, :valid_wav_lengths[b]] # (B, 1, valid_wav_length)
|
| 1090 |
+
|
| 1091 |
+
wav_list.append(valid_chunk_wav) # (B, 1, valid_wav_length)
|
| 1092 |
+
|
| 1093 |
+
# Concatenate all chunks
|
| 1094 |
+
if wav_list:
|
| 1095 |
+
wav_tensor = torch.cat(wav_list, dim=-1) # (B, 1, T_total)
|
| 1096 |
+
syn_wav_list = [wav_tensor[i, :, :code_lengths[i] * self.config.decoder_upsample_rate] for i in range(batch_size)] # B * (1, T,)
|
| 1097 |
+
else:
|
| 1098 |
+
syn_wav_list = [torch.zeros(1, 0, device=self.device) for _ in range(batch_size)] # B * (1, 0,)
|
| 1099 |
+
|
| 1100 |
+
if not return_dict:
|
| 1101 |
+
return (syn_wav_list,)
|
| 1102 |
+
|
| 1103 |
+
return XYTokenizerDecodeOutput(
|
| 1104 |
+
audio_values=syn_wav_list
|
| 1105 |
+
)
|
| 1106 |
+
|
| 1107 |
+
def _decode(
|
| 1108 |
+
self,
|
| 1109 |
+
audio_codes: torch.Tensor,
|
| 1110 |
+
codes_lengths: Optional[torch.Tensor] = None,
|
| 1111 |
+
return_dict: Optional[bool] = True,
|
| 1112 |
+
) -> Union[XYTokenizerDecodeOutput, Tuple]:
|
| 1113 |
+
r"""
|
| 1114 |
+
Decodes discrete codes back into an audio waveform.
|
| 1115 |
+
|
| 1116 |
+
Args:
|
| 1117 |
+
audio_codes (`torch.LongTensor` of shape `(num_codebooks, batch_size, sequence_length)`):
|
| 1118 |
+
The discrete codes from the quantizer for each codebook.
|
| 1119 |
+
codes_lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1120 |
+
The valid length of each sequence in `audio_codes`. If not provided, it's assumed to be the full length.
|
| 1121 |
+
return_dict (`bool`, *optional*):
|
| 1122 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1123 |
+
Returns:
|
| 1124 |
+
[`XYTokenizerDecodeOutput`] or `tuple(torch.FloatTensor)`
|
| 1125 |
+
"""
|
| 1126 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1127 |
+
|
| 1128 |
+
if codes_lengths is None:
|
| 1129 |
+
codes_lengths = torch.full((audio_codes.shape[1],), audio_codes.shape[2], device=self.device)
|
| 1130 |
+
|
| 1131 |
+
# --- Decoder Path ---
|
| 1132 |
+
zq = self.quantizer.decode_codes(audio_codes)
|
| 1133 |
+
|
| 1134 |
+
post_rvq_adapter_output, post_rvq_adapter_output_length = self.post_rvq_adapter(zq, codes_lengths)
|
| 1135 |
+
upsample_output, upsample_output_length = self.upsample(post_rvq_adapter_output, post_rvq_adapter_output_length)
|
| 1136 |
+
acoustic_decoder_output, acoustic_decoder_output_length = self.acoustic_decoder(upsample_output, upsample_output_length)
|
| 1137 |
+
y, vocos_output_length = self.enhanced_vocos(acoustic_decoder_output, acoustic_decoder_output_length)
|
| 1138 |
+
|
| 1139 |
+
if not return_dict:
|
| 1140 |
+
return (y, vocos_output_length)
|
| 1141 |
+
|
| 1142 |
+
return XYTokenizerDecodeOutput(
|
| 1143 |
+
audio_values=y,
|
| 1144 |
+
output_length=vocos_output_length
|
| 1145 |
+
)
|
| 1146 |
+
|
| 1147 |
+
def forward(
|
| 1148 |
+
self,
|
| 1149 |
+
input_values: torch.Tensor,
|
| 1150 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1151 |
+
n_quantizers: Optional[int] = None,
|
| 1152 |
+
return_dict: Optional[bool] = True,
|
| 1153 |
+
) -> Union[XYTokenizerModelOutput, Tuple]:
|
| 1154 |
+
r"""
|
| 1155 |
+
The forward method that handles the full encoding and decoding process.
|
| 1156 |
+
|
| 1157 |
+
Args:
|
| 1158 |
+
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
| 1159 |
+
Float values of the input audio waveform.
|
| 1160 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1161 |
+
Mask to avoid performing attention on padding token indices.
|
| 1162 |
+
n_quantizers (`int`, *optional*):
|
| 1163 |
+
The number of quantizers to use for encoding. If not specified, all quantizers are used.
|
| 1164 |
+
return_dict (`bool`, *optional*):
|
| 1165 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1166 |
+
|
| 1167 |
+
Examples:
|
| 1168 |
+
|
| 1169 |
+
```python
|
| 1170 |
+
>>> from transformers import AutoModel, AutoFeatureExtractor
|
| 1171 |
+
>>> from datasets import load_dataset, Audio
|
| 1172 |
+
>>> import torch
|
| 1173 |
+
|
| 1174 |
+
>>> # This is a placeholder model name, replace with the actual one on the Hub
|
| 1175 |
+
>>> model_id = "your-namespace/xy-tokenizer-model"
|
| 1176 |
+
>>> model = AutoModel.from_pretrained(model_id)
|
| 1177 |
+
>>> # The feature extractor config is part of the model config, so it can be loaded this way
|
| 1178 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
|
| 1179 |
+
|
| 1180 |
+
>>> # Load a dummy audio dataset
|
| 1181 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 1182 |
+
>>> audio_sample = ds[0]["audio"]["array"]
|
| 1183 |
+
>>> sampling_rate = ds[0]["audio"]["sampling_rate"]
|
| 1184 |
+
|
| 1185 |
+
>>> # Process audio
|
| 1186 |
+
>>> inputs = feature_extractor(audio_sample, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")
|
| 1187 |
+
|
| 1188 |
+
>>> # Encode to get codes
|
| 1189 |
+
>>> with torch.no_grad():
|
| 1190 |
+
... encoder_output = model.encode(inputs["input_values"], attention_mask=inputs["attention_mask"])
|
| 1191 |
+
... audio_codes = encoder_output.audio_codes
|
| 1192 |
+
|
| 1193 |
+
>>> # Decode from codes
|
| 1194 |
+
>>> with torch.no_grad():
|
| 1195 |
+
... decoder_output = model.decode(audio_codes)
|
| 1196 |
+
... reconstructed_audio = decoder_output.audio_values
|
| 1197 |
+
|
| 1198 |
+
>>> # Full forward pass
|
| 1199 |
+
>>> with torch.no_grad():
|
| 1200 |
+
... model_output = model(**inputs)
|
| 1201 |
+
... reconstructed_audio_fwd = model_output.audio_values
|
| 1202 |
+
|
| 1203 |
+
>>> print(reconstructed_audio.shape)
|
| 1204 |
+
torch.Size([1, 1, 147200])
|
| 1205 |
+
>>> print(torch.allclose(reconstructed_audio, reconstructed_audio_fwd))
|
| 1206 |
+
True
|
| 1207 |
+
```
|
| 1208 |
+
|
| 1209 |
+
Returns:
|
| 1210 |
+
[`XYTokenizerModelOutput`] or `tuple(torch.FloatTensor)`
|
| 1211 |
+
"""
|
| 1212 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1213 |
+
|
| 1214 |
+
encoder_outputs = self.encode(
|
| 1215 |
+
input_values=input_values,
|
| 1216 |
+
attention_mask=attention_mask,
|
| 1217 |
+
n_quantizers=n_quantizers,
|
| 1218 |
+
return_dict=True
|
| 1219 |
+
)
|
| 1220 |
+
|
| 1221 |
+
decoder_outputs = self.decode(
|
| 1222 |
+
audio_codes=encoder_outputs,
|
| 1223 |
+
return_dict=True
|
| 1224 |
+
)
|
| 1225 |
+
|
| 1226 |
+
if not return_dict:
|
| 1227 |
+
return (
|
| 1228 |
+
decoder_outputs.audio_values,
|
| 1229 |
+
decoder_outputs.output_length,
|
| 1230 |
+
encoder_outputs.quantized_representation,
|
| 1231 |
+
encoder_outputs.audio_codes,
|
| 1232 |
+
encoder_outputs.codes_lengths,
|
| 1233 |
+
encoder_outputs.commit_loss
|
| 1234 |
+
)
|
| 1235 |
+
|
| 1236 |
+
return XYTokenizerModelOutput(
|
| 1237 |
+
audio_values=decoder_outputs.audio_values,
|
| 1238 |
+
output_length=decoder_outputs.output_length,
|
| 1239 |
+
quantized_representation=encoder_outputs.quantized_representation,
|
| 1240 |
+
audio_codes=encoder_outputs.audio_codes,
|
| 1241 |
+
codes_lengths=encoder_outputs.codes_lengths,
|
| 1242 |
+
commit_loss=encoder_outputs.commit_loss
|
| 1243 |
+
)
|
preprocessor_config.json
CHANGED
|
@@ -9,5 +9,6 @@
|
|
| 9 |
"padding_value": 0.0,
|
| 10 |
"sampling_rate": 16000,
|
| 11 |
"return_attention_mask": true,
|
| 12 |
-
"return_tensors": "pt"
|
|
|
|
| 13 |
}
|
|
|
|
| 9 |
"padding_value": 0.0,
|
| 10 |
"sampling_rate": 16000,
|
| 11 |
"return_attention_mask": true,
|
| 12 |
+
"return_tensors": "pt",
|
| 13 |
+
"overlap_side": "both"
|
| 14 |
}
|