SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("PawK/GIS4MODEL")
# Run inference
sentences = [
'Threat 4 from Ball Aerospace James Webb Telescope security vulnerability Threat involving Threat 4 from Ball Aerospace James Webb Telescope security vulnerability',
'CVE-2023-29360: SIMULATED-1 This is a simulated vulnerability for testing with keyword: Ball Aerospace James Webb Telescope security vulnerability security Yes 2025-07-01 Ball Aerospace James Webb Telescope security vulnerability Risk Score: 6.194262717622377 Severity: Critical Exploitability: Moderate Impact: Significant Affected: Tech Industries Components Manufacturers: Tech Industries',
'CVE-2023-32315: SIMULATED-2 This is a simulated vulnerability for testing with keyword: James Webb Space Telescope compromise security No 2025-08-02 James Webb Space Telescope compromise Risk Score: 5.359379620388373 Severity: Critical Exploitability: Easy Impact: Minimal Affected: Cybersecurity Inc Components Manufacturers: Cybersecurity Inc',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
json
- Dataset: json
- Size: 769 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 769 samples:
anchor positive negative type string string string details - min: 11 tokens
- mean: 15.14 tokens
- max: 30 tokens
- min: 70 tokens
- mean: 78.26 tokens
- max: 89 tokens
- min: 70 tokens
- mean: 78.31 tokens
- max: 89 tokens
- Samples:
anchor positive negative Asset related to Asset 2 from Ball Aerospace James Webb Telescope security vulnerabilityCVE-2023-36036: SIMULATED-3 This is a simulated vulnerability for testing with keyword: Ball Aerospace James Webb Telescope security vulnerability security No 2025-09-05 Ball Aerospace James Webb Telescope security vulnerability Risk Score: 2.1667727327059936 Severity: High Exploitability: Moderate Impact: Minimal Affected: Generic Corp Components Manufacturers: Generic CorpCVE-2023-29360: SIMULATED-3 This is a simulated vulnerability for testing with keyword: Webb Telescope attack security Planned 2025-07-15 Webb Telescope attack Risk Score: 7.06990194191305 Severity: Medium Exploitability: Easy Impact: Minimal Affected: Cybersecurity Inc Components Manufacturers: Cybersecurity IncAsset related to Asset 3 from James Webb malwareCVE-2022-0847: SIMULATED-5 This is a simulated vulnerability for testing with keyword: James Webb malware malware Planned 2025-06-18 James Webb malware Risk Score: 3.346935150769055 Severity: Medium Exploitability: Easy Impact: Minimal Affected: Cybersecurity Inc Components Manufacturers: Cybersecurity IncCVE-2023-32315: SIMULATED-3 This is a simulated vulnerability for testing with keyword: James Webb CVE security No 2025-07-09 James Webb CVE Risk Score: 5.640697982524985 Severity: Low Exploitability: Moderate Impact: Minimal Affected: Tech Industries Components Manufacturers: Tech IndustriesAsset related to Asset 3 from Webb Telescope backdoorCVE-2023-32315: SIMULATED-4 This is a simulated vulnerability for testing with keyword: Webb Telescope backdoor security Yes 2025-09-13 Webb Telescope backdoor Risk Score: 4.6647547554970785 Severity: Medium Exploitability: Difficult Impact: Significant Affected: Tech Industries Components Manufacturers: Tech IndustriesCVE-2023-29360: SIMULATED-4 This is a simulated vulnerability for testing with keyword: Ball Aerospace James Webb Telescope security vulnerability security Yes 2025-09-13 Ball Aerospace James Webb Telescope security vulnerability Risk Score: 0.5088432907602923 Severity: Medium Exploitability: Difficult Impact: Critical Affected: Generic Corp Components Manufacturers: Generic Corp - Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 5 }
Evaluation Dataset
json
- Dataset: json
- Size: 193 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 193 samples:
anchor positive negative type string string string details - min: 11 tokens
- mean: 15.33 tokens
- max: 30 tokens
- min: 70 tokens
- mean: 78.34 tokens
- max: 89 tokens
- min: 70 tokens
- mean: 77.8 tokens
- max: 88 tokens
- Samples:
anchor positive negative Asset related to Asset 1 from James Webb backdoorCVE-2023-3456: SIMULATED-3 This is a simulated vulnerability for testing with keyword: James Webb backdoor security Yes 2025-07-13 James Webb backdoor Risk Score: 0.8440758738483046 Severity: Medium Exploitability: Difficult Impact: Critical Affected: Cybersecurity Inc Components Manufacturers: Cybersecurity IncCVE-2023-28771: SIMULATED-2 This is a simulated vulnerability for testing with keyword: Webb Telescope compromise security No 2025-06-15 Webb Telescope compromise Risk Score: 1.310545683795466 Severity: Medium Exploitability: Moderate Impact: Significant Affected: Generic Corp Components Manufacturers: Generic CorpAsset related to Asset 4 from James Webb breachCVE-2023-3456: SIMULATED-3 This is a simulated vulnerability for testing with keyword: James Webb breach security No 2025-08-12 James Webb breach Risk Score: 3.4028923165168137 Severity: Medium Exploitability: Easy Impact: Critical Affected: Generic Corp Components Manufacturers: Generic CorpCVE-2023-21036: SIMULATED-2 This is a simulated vulnerability for testing with keyword: James Webb Space Telescope security security Yes 2025-10-06 James Webb Space Telescope security Risk Score: 3.0882717202625423 Severity: Critical Exploitability: Easy Impact: Moderate Affected: Tech Industries Components Manufacturers: Tech IndustriesAsset related to Asset 3 from James Webb Space Telescope securityCVE-2023-32315: SIMULATED-1 This is a simulated vulnerability for testing with keyword: James Webb Space Telescope security security Yes 2025-09-03 James Webb Space Telescope security Risk Score: 6.962623430566551 Severity: High Exploitability: Moderate Impact: Significant Affected: Generic Corp Components Manufacturers: Generic CorpCVE-2023-28771: SIMULATED-1 This is a simulated vulnerability for testing with keyword: James Webb Space Telescope threat security No 2025-09-23 James Webb Space Telescope threat Risk Score: 7.572013580016532 Severity: Low Exploitability: Moderate Impact: Moderate Affected: Tech Industries Components Manufacturers: Tech Industries - Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 4warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 2.0 | 50 | 4.0999 | - |
| 2.32 | 60 | 4.0104 | - |
| 2.7200 | 70 | 4.0787 | - |
| 3.12 | 80 | 3.9972 | - |
| 3.52 | 90 | 3.9994 | - |
| 3.92 | 100 | 4.0216 | 3.8883 |
Framework Versions
- Python: 3.13.3
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cpu
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- -
Model tree for PawK/GIS4MODEL
Base model
sentence-transformers/all-MiniLM-L6-v2