Petermantt's picture
Upload Vietnamese LoRA adapter for L3-8B-Stheno
874d71b verified
metadata
base_model: Sao10K/L3-8B-Stheno-v3.2
library_name: peft
language:
  - vi
  - en
license: apache-2.0
tags:
  - llama3
  - vietnamese
  - qlora
  - stheno
  - text-generation
datasets:
  - alpaca-vietnamese
model-index:
  - name: L3-8B-Stheno-Vietnamese-LoRA
    results: []
widget:
  - text: |
      <|im_start|>user
      Xin chào, bạn có thể giới thiệu về Việt Nam không?<|im_end|>
      <|im_start|>assistant
  - text: |
      <|im_start|>user
      Làm thế nào để học lập trình Python hiệu quả?<|im_end|>
      <|im_start|>assistant
  - text: |
      <|im_start|>user
      Hãy viết một bài thơ ngắn về mùa xuân.<|im_end|>
      <|im_start|>assistant

L3-8B-Stheno Vietnamese LoRA Adapter

This is a QLoRA adapter for Sao10K/L3-8B-Stheno-v3.2 fine-tuned on Vietnamese instructions dataset.

Model Details

Model Description

A Vietnamese language adapter for L3-8B-Stheno-v3.2, trained using QLoRA (4-bit quantization) to enable Vietnamese language capabilities while maintaining the base model's strengths.

  • Developed by: Petermantt
  • Model type: LoRA Adapter for Causal Language Model
  • Language(s) (NLP): Vietnamese, English
  • License: Apache 2.0
  • Finetuned from model: Sao10K/L3-8B-Stheno-v3.2

Model Sources

Uses

Direct Use

This adapter is designed for Vietnamese text generation, instruction following, and conversational AI. It can be used for:

  • Vietnamese chatbots and assistants
  • Content generation in Vietnamese
  • Translation assistance
  • Educational applications

Quick Start

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
import torch

# QLoRA config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
)

# Load base model
model = AutoModelForCausalLM.from_pretrained(
    "Sao10K/L3-8B-Stheno-v3.2",
    quantization_config=bnb_config,
    device_map="auto",
    trust_remote_code=True,
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("Sao10K/L3-8B-Stheno-v3.2", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

# Load LoRA adapter
model = PeftModel.from_pretrained(model, "Petermantt/L3-8B-Stheno-Vietnamese-LoRA")

# Generate
prompt = "<|im_start|>user\nXin chào! Bạn khỏe không?<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=200,
        temperature=0.7,
        do_sample=True,
        pad_token_id=tokenizer.pad_token_id,
    )

response = tokenizer.decode(outputs[0], skip_special_tokens=False)
print(response)

Out-of-Scope Use

  • Not suitable for critical applications without human oversight
  • Should not be used for generating harmful or misleading content
  • May have biases from training data

Bias, Risks, and Limitations

  • May reflect biases present in the Vietnamese Alpaca dataset
  • Performance may vary on specialized domains not covered in training
  • Inherits limitations from the base L3-8B-Stheno model
  • Best performance with Vietnamese instructions, English capability maintained but not enhanced

Recommendations

  • Always verify outputs for factual accuracy
  • Use with human oversight for important applications
  • Consider domain-specific fine-tuning for specialized use cases
  • Test thoroughly before production deployment

Compatibility

This LoRA adapter should work with:

  • ✅ Sao10K/L3-8B-Stheno-v3.2 (tested)
  • ✅ Other Llama-3 8B models with same architecture
  • ⚠️ May work with other Stheno variants (untested)

Requirements

  • Same tokenizer as base model
  • Compatible model architecture (Llama-3 8B)
  • 4-bit quantization support

Training Details

Training Data

The adapter was trained on Vietnamese translations of the Alpaca dataset (~20,000 instructions), containing diverse instruction-following examples including:

  • General knowledge Q&A
  • Creative writing
  • Problem-solving
  • Code generation (basic)
  • Conversational responses

Training Procedure

Training Configuration

  • Base Model: Sao10K/L3-8B-Stheno-v3.2
  • Training Method: QLoRA (4-bit quantization)
  • LoRA Config:
    • Rank: 32
    • Alpha: 64
    • Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
    • Dropout: 0.05

Training Hyperparameters

  • Training regime: fp16 mixed precision
  • Batch size: 1 (with gradient accumulation = 4)
  • Learning rate: 2e-4 with cosine scheduler
  • Warmup steps: 50
  • Total steps: 1,250
  • Max sequence length: 1,024

Training Infrastructure

  • Hardware: NVIDIA RTX 3060 12GB
  • Training time: ~2 hours 17 minutes
  • Framework: PyTorch 2.5.1, Transformers 4.52.4, PEFT 0.15.2

Evaluation

Training Results

  • Final Loss: 0.8693
  • Final Accuracy: 78.8%
  • Total Steps: 1,250

Training Progress

  • Starting: Loss 1.68, Accuracy 64.8%
  • Step 500: Loss 1.17, Accuracy 72.4%
  • Step 1000: Loss 0.94, Accuracy 77.5%
  • Final: Loss 0.87, Accuracy 78.8%

Example Outputs

Vietnamese Chat:

User: Xin chào, bạn có thể giới thiệu về Việt Nam không?
Assistant: Việt Nam, còn được gọi là Cộng hòa Xã hội Chủ nghĩa Việt Nam, là một quốc gia nằm ở Đông Nam Á với diện tích 331.699 km2 và dân số khoảng 98 triệu người...

Model Examination [optional]

[More Information Needed]

Environmental Impact

  • Hardware Type: NVIDIA RTX 3060 12GB
  • Hours used: ~2.3 hours
  • Cloud Provider: Local training
  • Compute Region: N/A
  • Carbon Emitted: Minimal due to short training time and efficient QLoRA method

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation

If you use this model, please cite:

BibTeX:

@misc{stheno-vietnamese-lora-2024,
  author = {Petermantt},
  title = {L3-8B-Stheno Vietnamese LoRA Adapter},
  year = {2024},
  publisher = {HuggingFace},
  url = {https://huggingface.co/Petermantt/L3-8B-Stheno-Vietnamese-LoRA}
}

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors

Petermantt

Model Card Contact

Please open an issue on the HuggingFace repository for questions or concerns.

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.4
  • PyTorch 2.5.1
  • Datasets 3.6.0
  • Tokenizers 0.21.1