DeepMedix-R1
Collection
Chest X-ray foundation model with step reasoning.
•
2 items
•
Updated
•
1
Model Usage:
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_path, max_pixels=262144)
reason_prompt = r"You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning process MUST BE enclosed within <think> </think> tags. During this reasoning process, prioritize analyzing the local regions of the image by leveraging the bounding box coordinates in the format [x_min, y_min, x_max, y_max]. The final answer MUST BE put in \boxed{}. An example is like: <think> reasoning process 1 with [x_min1, y_min1, x_max1, y_max1]; reasoning process 2 with [x_min2, y_min2, x_max2, y_max2] </think>. The answer is: \boxed{answer}."
def get_label(images, content1):
content_list = []
for image_url in images:
content_list.append({
"type": "image",
"image": image_url,
})
if mode == 'think':
content_list.append({"type": "text",
"text": content1 + '\n' + reason_prompt + '\n'})
else:
content_list.append({"type": "text",
"text": content1})
messages = [
{
"role": "user",
"content": content_list
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# print(text)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=4096, do_sample=True, temperature=0.6)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# print(output_text)
# print(output_text[0])
return output_text[0]