RuntimeError: probability tensor contains either inf, nan or element < 0
#16
by
mstachow
- opened
I keep getting this error, but only for some input images, when using the AWQ version of the model. The huge issue is that this ends up poisoning the device, and I can't do any inference on any images, even ones that worked previously, once the error happens. However, I can't seem to figure out what's going on or why it's happening, and inspecting various things about the images seem to produce no obvious differences - sizes are identical, the device has enough memory for all of the images, pixel values do range from 0 to 255, so maybe it's an overflow error?
Here is the generate function I'm using:
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
AutoModelForCausalLM,
AutoTokenizer
)
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import tempfile
import uvicorn
import os
app = FastAPI()
# ----------------------------
# Model 1: Vision-Language Model (GPU1)
# ----------------------------
model_vl = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-72B-Instruct-AWQ", torch_dtype=torch.bfloat16, device_map={"": 1}
)
print(model_vl)
#processor_vl = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct-AWQ")
processor_vl = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct-AWQ")
# ----------------------------
# Vision + Language Endpoint
# ----------------------------
@app
.post("/generate_vision")
async def generate_vision(prompt: str = Form(...), file: UploadFile = File(...)):
try:
filename = file.filename
suffix = os.path.splitext(filename)[1]
# Create a permanent storage directory if it doesn't exist
save_dir = "saved_images"
os.makedirs(save_dir, exist_ok=True)
# Save image permanently
saved_path = os.path.join(save_dir, filename)
with open(saved_path, "wb") as f:
f.write(await file.read())
# Re-open the saved file for reading during processing
img_path = saved_path
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": img_path},
{"type": "text", "text": prompt},
],
}
]
text = processor_vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor_vl(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda:1")
for k, v in inputs.items():
if torch.isnan(v).any():
print(f"NaNs in {k}")
if torch.isinf(v).any():
print(f"Infs in {k}")
if (v < 0).any() and k != 'attention_mask':
print(f"Negative values in {k}")
generated_ids = model_vl.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor_vl.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return JSONResponse(content={"result": output_text[0], "saved_image": saved_path})
except Exception as e:
#If something went wrong and poisoned the device, we need to know what the problem was.
return JSONResponse(content={"result": f"processing the image failed: {str(e)}"})