beyondblue_BERTopic_MentalBERT

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("Rain4301/beyondblue_BERTopic_MentalBERT")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 9
  • Number of training documents: 500
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 im - like - feel - dont - know 41 -1_im_like_feel_dont
0 im - ive - anxiety - like - health 219 0_im_ive_anxiety_like
1 women - girl - ive - gay - im 97 1_women_girl_ive_gay
2 family - one - life - feel - years 12 2_family_one_life_feel
3 im - dont - really - know - pronouns 47 3_im_dont_really_know
4 im - things - would - dont - didnt 24 4_im_things_would_dont
5 mum - know - dont - didnt - feel 11 5_mum_know_dont_didnt
6 im - dont - feel - like - know 27 6_im_dont_feel_like
7 im - dont - like - feel - know 22 7_im_dont_like_feel

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 3)
  • nr_topics: 11
  • seed_topic_list: None
  • top_n_words: 15
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.9.post2
  • Pandas: 2.3.0
  • Scikit-Learn: 1.7.0
  • Sentence-transformers: 5.0.0
  • Transformers: 4.52.4
  • Numba: 0.61.2
  • Plotly: 6.2.0
  • Python: 3.11.13
Downloads last month
40
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support