beyondblue_BERTopic_MentalBERT
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("Rain4301/beyondblue_BERTopic_MentalBERT")
topic_model.get_topic_info()
Topic overview
- Number of topics: 9
- Number of training documents: 500
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | im - like - feel - dont - know | 41 | -1_im_like_feel_dont |
0 | im - ive - anxiety - like - health | 219 | 0_im_ive_anxiety_like |
1 | women - girl - ive - gay - im | 97 | 1_women_girl_ive_gay |
2 | family - one - life - feel - years | 12 | 2_family_one_life_feel |
3 | im - dont - really - know - pronouns | 47 | 3_im_dont_really_know |
4 | im - things - would - dont - didnt | 24 | 4_im_things_would_dont |
5 | mum - know - dont - didnt - feel | 11 | 5_mum_know_dont_didnt |
6 | im - dont - feel - like - know | 27 | 6_im_dont_feel_like |
7 | im - dont - like - feel - know | 22 | 7_im_dont_like_feel |
Training hyperparameters
- calculate_probabilities: False
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 3)
- nr_topics: 11
- seed_topic_list: None
- top_n_words: 15
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.40
- UMAP: 0.5.9.post2
- Pandas: 2.3.0
- Scikit-Learn: 1.7.0
- Sentence-transformers: 5.0.0
- Transformers: 4.52.4
- Numba: 0.61.2
- Plotly: 6.2.0
- Python: 3.11.13
- Downloads last month
- 40
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support