Chinese LLM MCQ Model - KAGGLE #2
這是NYCU深度學習課程KAGGLE #2的模型,使用Qwen2.5-7B-Instruct進行微調,加入了推理鏈能力。
模型資訊
- 基礎模型: Qwen/Qwen2.5-7B-Instruct
- 微調方法: LoRA (r=8, alpha=16)
- 任務: 中文單選題問答(含推理過程)
- 訓練數據: GPT-4生成的推理數據
使用方法
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# 載入基礎模型
base_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-7B-Instruct",
device_map="auto",
trust_remote_code=True
)
# 載入LoRA
model = PeftModel.from_pretrained(base_model, "RayTsai/Kaggle_2")
# 載入tokenizer
tokenizer = AutoTokenizer.from_pretrained("RayTsai/Kaggle_2")
作者
- Ray Tsai (110651053)
- NYCU 深度學習課程 2025
- Downloads last month
- 4