Llama-4-Scout-17B-16E-Instruct-NVFP4
Model Overview
- Model Architecture: Meta-Llama-3.1
- Input: Text / Image
- Output: Text
- Model Optimizations:
- Weight quantization: FP4
- Activation quantization: FP4
- Intended Use Cases: Intended for commercial and research use in multiple languages.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- Release Date: 7/15/25
- Version: 1.0
- License(s): llama3.1
- Model Developers: RedHatAI
This model is a quantized version of Llama-4-Scout-17B-16E-Instruct. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
Model Optimizations
This model was obtained by quantizing the weights and activations of Llama-4-Scout-17B-16E-Instruct to FP4 data type, ready for inference with vLLM>=0.9.1 This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights of the linear operators within transformers blocks are quantized using LLM Compressor.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
Model Usage Code
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4"
number_gpus = 2
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created by applying LLM Compressor with calibration samples from neuralmagic/calibration dataset, as presented in the code snipet below.
Model Creation Code
from transformers import Llama4ForConditionalGeneration, Llama4Processor
from transformers.quantizers.quantizers_utils import get_module_from_name
import torch
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.utils.dev import skip_weights_initialize
from transformers.models.llama4.modeling_llama4 import Llama4TextMLP
from llmcompressor.modifiers.quantization import QuantizationModifier
import gc
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
def convert_model_for_quantization(model):
to_delete = []
for name, module in model.named_modules():
module_class_name = module.__class__.__name__
if module_class_name == "Llama4TextMoe":
parent_module, module_name = get_module_from_name(model, name)
parent_module._modules[module_name] = SequentialLlama4TextMoe(
model.config.get_text_config(),
module,
)
to_delete.append(module)
print(f"Patched {name} with SequentialLlama4TextMoe", flush=True)
for module in to_delete:
del module
gc.collect()
torch.cuda.empty_cache()
class SequentialLlama4TextMoe(torch.nn.Module):
def __init__(self, config, original_moe):
super().__init__()
self.top_k = config.num_experts_per_tok
self.hidden_dim = config.hidden_size
self.num_experts = config.num_local_experts
self.experts = SequentialLlama4TextExperts(config, original_moe.experts)
self.router = original_moe.router
self.shared_expert = original_moe.shared_expert
def forward(self, hidden_states):
hidden_states = hidden_states.reshape(-1, self.hidden_dim)
router_logits = self.router(hidden_states)
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=1)
router_scores = (
torch.full_like(router_logits, float("-inf")).scatter_(1, router_indices, router_top_value).transpose(0, 1)
)
router_scores = torch.sigmoid(router_scores.float()).to(hidden_states.dtype)
out = self.shared_expert(hidden_states)
for i in range(self.num_experts):
out += self.experts[i](hidden_states) * router_scores[i].reshape(-1, 1)
return out, router_scores
class SequentialLlama4TextExperts(torch.nn.ModuleList):
def __init__(self, config, original_experts):
self.num_experts = original_experts.gate_up_proj.shape[0]
with skip_weights_initialize():
super().__init__([Llama4TextMLP(config) for _ in range(self.num_experts)])
intermediate_size = original_experts.down_proj.shape[1]
for i in range(self.num_experts):
gate_up = original_experts.gate_up_proj[i]
down = original_experts.down_proj[i]
gate_proj = gate_up[:, :intermediate_size]
up_proj = gate_up[:, intermediate_size:]
self[i].gate_proj.weight.data = gate_proj.t().clone().contiguous()
self[i].up_proj.weight.data = up_proj.t().clone().contiguous()
self[i].down_proj.weight.data = down.t().clone().contiguous()
original_experts.gate_up_proj = None
original_experts.down_proj = None
gc.collect()
torch.cuda.empty_cache()
model_id = "meta-llama/Llama-4-Scout-17B-16E"
model = Llama4ForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch.bfloat16 # load on cpu
)
processor = Llama4Processor.from_pretrained(model_id)
convert_model_for_quantization(model)
# Oneshot arguments
DATASET_ID = "neuralmagic/calibration"
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 8192
ds = load_dataset(DATASET_ID, name="LLM", split=f"train[:{NUM_CALIBRATION_SAMPLES}]")
def preprocess_function(example):
messgages = []
for message in example["messages"]:
messgages.append(
{
"role": message["role"],
"content": [{"type": "text", "text": message["content"]}]
}
)
return processor.apply_chat_template(
messgages,
return_tensors="pt",
padding=False,
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
tokenize=True,
add_special_tokens=False,
return_dict=True,
add_generation_prompt=False,
).to("cuda:0")
ds = ds.map(
preprocess_function,
batched=False,
remove_columns=ds.column_names
)
# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
assert len(batch) == 1
return {
key: torch.tensor(value) if key != "pixel_values" else torch.tensor(value, dtype=torch.bfloat16).squeeze(0)
for key, value in batch[0].items()
}
# Recipe
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4",
ignore=[
're:.*lm_head',
're:.*self_attn',
're:.*router',
're:.*vision_model',
're:.*multi_modal_projector',
're:.*multi_modal_projector',
"Llama4TextAttention",
],
sequential_targets=["Llama4TextMLP"],
)
SAVE_DIR = f"{model_id.split('/')[1]}-{recipe.scheme}"
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True,
data_collator=data_collator,
output_dir=SAVE_DIR
)
# Save to disk compressed.
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using lm-evaluation-harness.
Category | Metric | Llama-4-Scout-17B-16E-Instruct (A100) | Llama-4-Scout-17B-16E-Instruct-NVFP4 (B200) | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC Challenge (LLaMA) | 93.39 | 92.10 | 98.62% |
GSM8K (LLaMA) | 92.87 | 94.31 | 101.55% | |
MMLU (LLaMA) | 81.01 | 79.37 | 97.98% | |
MMLU-CoT (LLaMA) | 85.99 | 84.58 | 98.36% | |
Hellaswag | 79.13 | 78.47 | 99.17% | |
TruthfulQA-mc2 | 62.53 | 60.83 | 97.28% | |
Winogrande | 73.56 | 73.01 | 99.25% | |
Average | 81.21 | 80.38 | 98.89% | |
OpenLLM V2 | MMLU-Pro | 55.64 | 53.84 | 96.76% |
IFEval | 89.09 | 89.93 | 100.94% | |
BBH | 65.14 | 64.00 | 98.25% | |
Math-Hard | 52.64 | 56.12 | 106.61% | |
GPQA | 32.21 | 31.88 | 98.98% | |
MuSR | 42.20 | 42.99 | 101.87% | |
Average | 56.15 | 56.46 | 100.55% | |
Coding | HumanEval Instruct pass@1 | 81.71 | 76.22 | 93.29% |
HumanEval 64 Instruct pass@2 | 83.49 | 81.10 | 97.14% | |
HumanEval 64 Instruct pass@8 | 87.71 | 88.66 | 101.08% | |
HumanEval 64 Instruct pass@16 | 88.71 | 90.11 | 101.58% | |
HumanEval 64 Instruct pass@32 | 89.38 | 90.91 | 101.71% | |
HumanEval 64 Instruct pass@64 | 89.63 | 91.46 | 102.04% |
Reproduction
The results were obtained using the following commands:
Model Evaluation Commands
MMLU_LLAMA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks mmlu_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
MMLU_COT_LLAMA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks mmlu_cot_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
ARC-Challenge
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks arc_challenge_llama \
--apply_chat_template \
--batch_size auto
GSM-8K
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks gsm8k_llama \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
Hellaswag
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks hellaswag \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
Winogrande
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks winogrande \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
TruthfulQA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
--tasks truthfulqa \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
OpenLLM v2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
HumanEval and HumanEval_64
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_instruct \
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_64_instruct \
--batch_size auto
- Downloads last month
- 151
Model tree for RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4
Base model
meta-llama/Llama-4-Scout-17B-16E