Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,436 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- fp4
|
| 4 |
+
- vllm
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
- de
|
| 8 |
+
- fr
|
| 9 |
+
- it
|
| 10 |
+
- pt
|
| 11 |
+
- hi
|
| 12 |
+
- es
|
| 13 |
+
- th
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
+
license: llama3.1
|
| 16 |
+
base_model: meta-llama/Llama-4-Scout-17B-16E-Instruct
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Llama-4-Scout-17B-16E-Instruct-NVFP4
|
| 20 |
+
|
| 21 |
+
## Model Overview
|
| 22 |
+
- **Model Architecture:** Meta-Llama-3.1
|
| 23 |
+
- **Input:** Text
|
| 24 |
+
- **Output:** Text
|
| 25 |
+
- **Model Optimizations:**
|
| 26 |
+
- **Weight quantization:** FP4
|
| 27 |
+
- **Activation quantization:** FP4
|
| 28 |
+
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
|
| 29 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 30 |
+
- **Release Date:** 7/15/25
|
| 31 |
+
- **Version:** 1.0
|
| 32 |
+
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
| 33 |
+
- **Model Developers:** RedHatAI
|
| 34 |
+
|
| 35 |
+
This model is a quantized version of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct).
|
| 36 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
|
| 37 |
+
|
| 38 |
+
### Model Optimizations
|
| 39 |
+
|
| 40 |
+
This model was obtained by quantizing the weights and activations of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1
|
| 41 |
+
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
|
| 42 |
+
|
| 43 |
+
Only the weights of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
|
| 44 |
+
|
| 45 |
+
## Deployment
|
| 46 |
+
|
| 47 |
+
### Use with vLLM
|
| 48 |
+
|
| 49 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
from vllm import LLM, SamplingParams
|
| 53 |
+
from transformers import AutoTokenizer
|
| 54 |
+
|
| 55 |
+
model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4"
|
| 56 |
+
number_gpus = 2
|
| 57 |
+
|
| 58 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
| 59 |
+
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 61 |
+
|
| 62 |
+
messages = [
|
| 63 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 64 |
+
{"role": "user", "content": "Who are you?"},
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
| 68 |
+
|
| 69 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
| 70 |
+
|
| 71 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 72 |
+
|
| 73 |
+
generated_text = outputs[0].outputs[0].text
|
| 74 |
+
print(generated_text)
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
| 78 |
+
|
| 79 |
+
## Creation
|
| 80 |
+
|
| 81 |
+
This model was created by applying [LLM Compressor with calibration samples from neuralmagic/calibration dataset](https://github.com/vllm-project/llm-compressor/blob/main/examples/multimodal_vision/llama4_example.py), as presented in the code snipet below.
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
import torch
|
| 85 |
+
from datasets import load_dataset
|
| 86 |
+
from transformers import Llama4ForConditionalGeneration, Llama4Processor
|
| 87 |
+
|
| 88 |
+
from llmcompressor import oneshot
|
| 89 |
+
from llmcompressor.modeling import prepare_for_calibration
|
| 90 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
| 91 |
+
|
| 92 |
+
# Select model and load it.
|
| 93 |
+
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
|
| 94 |
+
model = Llama4ForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto")
|
| 95 |
+
processor = Llama4Processor.from_pretrained(model_id)
|
| 96 |
+
# We update `Llama4TextMoe` modules with custom `SequentialLlama4TextMoe`.
|
| 97 |
+
# This change allows compatibility with vllm.
|
| 98 |
+
# To apply your own custom module for experimentation, consider updating
|
| 99 |
+
# `SequentialLlama4TextMoe` under llmcompressor/modeling/llama4.py
|
| 100 |
+
model = prepare_for_calibration(model)
|
| 101 |
+
|
| 102 |
+
DATASET_ID = "neuralmagic/calibration"
|
| 103 |
+
NUM_CALIBRATION_SAMPLES = 512
|
| 104 |
+
MAX_SEQUENCE_LENGTH = 8192
|
| 105 |
+
|
| 106 |
+
ds = load_dataset(DATASET_ID, name="LLM", split=f"train[:{NUM_CALIBRATION_SAMPLES}]")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def preprocess_function(example):
|
| 110 |
+
messgages = []
|
| 111 |
+
for message in example["messages"]:
|
| 112 |
+
messgages.append(
|
| 113 |
+
{
|
| 114 |
+
"role": message["role"],
|
| 115 |
+
"content": [{"type": "text", "text": message["content"]}],
|
| 116 |
+
}
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
return processor.apply_chat_template(
|
| 120 |
+
messgages,
|
| 121 |
+
return_tensors="pt",
|
| 122 |
+
padding=False,
|
| 123 |
+
truncation=True,
|
| 124 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
| 125 |
+
tokenize=True,
|
| 126 |
+
add_special_tokens=False,
|
| 127 |
+
return_dict=True,
|
| 128 |
+
add_generation_prompt=False,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
ds = ds.map(preprocess_function, batched=False, remove_columns=ds.column_names)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def data_collator(batch):
|
| 136 |
+
assert len(batch) == 1
|
| 137 |
+
return {
|
| 138 |
+
key: torch.tensor(value)
|
| 139 |
+
if key != "pixel_values"
|
| 140 |
+
else torch.tensor(value, dtype=torch.bfloat16).squeeze(0)
|
| 141 |
+
for key, value in batch[0].items()
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
# Configure the quantization algorithm to run.
|
| 146 |
+
recipe = GPTQModifier(
|
| 147 |
+
targets="Linear",
|
| 148 |
+
scheme="W4A16",
|
| 149 |
+
ignore=[
|
| 150 |
+
"re:.*lm_head",
|
| 151 |
+
"re:.*self_attn",
|
| 152 |
+
"re:.*router",
|
| 153 |
+
"re:vision_model.*",
|
| 154 |
+
"re:multi_modal_projector.*",
|
| 155 |
+
"Llama4TextAttention",
|
| 156 |
+
],
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# Apply algorithms.
|
| 160 |
+
# due to the large size of Llama4, we specify sequential targets such that
|
| 161 |
+
# only one MLP is loaded into GPU memory at a time
|
| 162 |
+
oneshot(
|
| 163 |
+
model=model,
|
| 164 |
+
dataset=ds,
|
| 165 |
+
recipe=recipe,
|
| 166 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
| 167 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
| 168 |
+
data_collator=data_collator,
|
| 169 |
+
sequential_targets=["Llama4TextMLP"],
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Save to disk compressed.
|
| 173 |
+
SAVE_DIR = model_id.rstrip("/").split("/")[-1] + "-W4A16-G128"
|
| 174 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
| 175 |
+
processor.save_pretrained(SAVE_DIR)
|
| 176 |
+
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
## Evaluation
|
| 180 |
+
|
| 181 |
+
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness).
|
| 182 |
+
<table>
|
| 183 |
+
<thead>
|
| 184 |
+
<tr>
|
| 185 |
+
<th>Category</th>
|
| 186 |
+
<th>Metric</th>
|
| 187 |
+
<th>Llama-4-Scout-17B-16E-Instruct (A100)</th>
|
| 188 |
+
<th>Llama-4-Scout-17B-16E-Instruct-NVFP4 (B200)</th>
|
| 189 |
+
<th>Recovery (%)</th>
|
| 190 |
+
</tr>
|
| 191 |
+
</thead>
|
| 192 |
+
<tbody>
|
| 193 |
+
<tr>
|
| 194 |
+
<td rowspan="8"><b>OpenLLM V1</b></td>
|
| 195 |
+
<td>ARC Challenge (LLaMA)</td>
|
| 196 |
+
<td>93.39</td>
|
| 197 |
+
<td>92.10</td>
|
| 198 |
+
<td>98.62%</td>
|
| 199 |
+
</tr>
|
| 200 |
+
<tr>
|
| 201 |
+
<td>GSM8K (LLaMA)</td>
|
| 202 |
+
<td>92.87</td>
|
| 203 |
+
<td>94.31</td>
|
| 204 |
+
<td>101.55%</td>
|
| 205 |
+
</tr>
|
| 206 |
+
<tr>
|
| 207 |
+
<td>MMLU (LLaMA)</td>
|
| 208 |
+
<td>81.01</td>
|
| 209 |
+
<td>79.37</td>
|
| 210 |
+
<td>97.98%</td>
|
| 211 |
+
</tr>
|
| 212 |
+
<tr>
|
| 213 |
+
<td>MMLU-CoT (LLaMA)</td>
|
| 214 |
+
<td>85.99</td>
|
| 215 |
+
<td>84.58</td>
|
| 216 |
+
<td>98.36%</td>
|
| 217 |
+
</tr>
|
| 218 |
+
<tr>
|
| 219 |
+
<td>Hellaswag</td>
|
| 220 |
+
<td>79.13</td>
|
| 221 |
+
<td>78.47</td>
|
| 222 |
+
<td>99.17%</td>
|
| 223 |
+
</tr>
|
| 224 |
+
<tr>
|
| 225 |
+
<td>TruthfulQA-mc2</td>
|
| 226 |
+
<td>62.53</td>
|
| 227 |
+
<td>60.83</td>
|
| 228 |
+
<td>97.28%</td>
|
| 229 |
+
</tr>
|
| 230 |
+
<tr>
|
| 231 |
+
<td>Winogrande</td>
|
| 232 |
+
<td>73.56</td>
|
| 233 |
+
<td>73.01</td>
|
| 234 |
+
<td>99.25%</td>
|
| 235 |
+
</tr>
|
| 236 |
+
<tr>
|
| 237 |
+
<td><b>Average</b></td>
|
| 238 |
+
<td><b>81.21</b></td>
|
| 239 |
+
<td><b>80.38</b></td>
|
| 240 |
+
<td><b>98.89%</b></td>
|
| 241 |
+
</tr>
|
| 242 |
+
<tr>
|
| 243 |
+
<td rowspan="7"><b>OpenLLM V2</b></td>
|
| 244 |
+
<td>MMLU-Pro</td>
|
| 245 |
+
<td>55.64</td>
|
| 246 |
+
<td>53.84</td>
|
| 247 |
+
<td>96.76%</td>
|
| 248 |
+
</tr>
|
| 249 |
+
<tr>
|
| 250 |
+
<td>IFEval</td>
|
| 251 |
+
<td>89.09</td>
|
| 252 |
+
<td>89.93</td>
|
| 253 |
+
<td>100.94%</td>
|
| 254 |
+
</tr>
|
| 255 |
+
<tr>
|
| 256 |
+
<td>BBH</td>
|
| 257 |
+
<td>65.14</td>
|
| 258 |
+
<td>64.00</td>
|
| 259 |
+
<td>98.25%</td>
|
| 260 |
+
</tr>
|
| 261 |
+
<tr>
|
| 262 |
+
<td>Math-Hard</td>
|
| 263 |
+
<td>52.64</td>
|
| 264 |
+
<td>56.12</td>
|
| 265 |
+
<td>106.61%</td>
|
| 266 |
+
</tr>
|
| 267 |
+
<tr>
|
| 268 |
+
<td>GPQA</td>
|
| 269 |
+
<td>32.21</td>
|
| 270 |
+
<td>31.88</td>
|
| 271 |
+
<td>98.98%</td>
|
| 272 |
+
</tr>
|
| 273 |
+
<tr>
|
| 274 |
+
<td>MuSR</td>
|
| 275 |
+
<td>42.20</td>
|
| 276 |
+
<td>42.99</td>
|
| 277 |
+
<td>101.87%</td>
|
| 278 |
+
</tr>
|
| 279 |
+
<tr>
|
| 280 |
+
<td><b>Average</b></td>
|
| 281 |
+
<td><b>56.15</b></td>
|
| 282 |
+
<td><b>56.46</b></td>
|
| 283 |
+
<td><b>100.55%</b></td>
|
| 284 |
+
</tr>
|
| 285 |
+
<tr>
|
| 286 |
+
<td><b>Coding</b></td>
|
| 287 |
+
<td>HumanEval Instruct pass@1</td>
|
| 288 |
+
<td>81.71</td>
|
| 289 |
+
<td>76.22</td>
|
| 290 |
+
<td>93.29%</td>
|
| 291 |
+
</tr>
|
| 292 |
+
<tr>
|
| 293 |
+
<td rowspan="5"></td>
|
| 294 |
+
<td>HumanEval 64 Instruct pass@2</td>
|
| 295 |
+
<td>83.49</td>
|
| 296 |
+
<td>81.10</td>
|
| 297 |
+
<td>97.14%</td>
|
| 298 |
+
</tr>
|
| 299 |
+
<tr>
|
| 300 |
+
<td>HumanEval 64 Instruct pass@8</td>
|
| 301 |
+
<td>87.71</td>
|
| 302 |
+
<td>88.66</td>
|
| 303 |
+
<td>101.08%</td>
|
| 304 |
+
</tr>
|
| 305 |
+
<tr>
|
| 306 |
+
<td>HumanEval 64 Instruct pass@16</td>
|
| 307 |
+
<td>88.71</td>
|
| 308 |
+
<td>90.11</td>
|
| 309 |
+
<td>101.58%</td>
|
| 310 |
+
</tr>
|
| 311 |
+
<tr>
|
| 312 |
+
<td>HumanEval 64 Instruct pass@32</td>
|
| 313 |
+
<td>89.38</td>
|
| 314 |
+
<td>90.91</td>
|
| 315 |
+
<td>101.71%</td>
|
| 316 |
+
</tr>
|
| 317 |
+
<tr>
|
| 318 |
+
<td>HumanEval 64 Instruct pass@64</td>
|
| 319 |
+
<td>89.63</td>
|
| 320 |
+
<td>91.46</td>
|
| 321 |
+
<td>102.04%</td>
|
| 322 |
+
</tr>
|
| 323 |
+
</tbody>
|
| 324 |
+
</table>
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
### Reproduction
|
| 328 |
+
|
| 329 |
+
The results were obtained using the following commands:
|
| 330 |
+
|
| 331 |
+
#### MMLU_LLAMA
|
| 332 |
+
```
|
| 333 |
+
lm_eval \
|
| 334 |
+
--model vllm \
|
| 335 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
| 336 |
+
--tasks mmlu_llama \
|
| 337 |
+
--apply_chat_template \
|
| 338 |
+
--fewshot_as_multiturn \
|
| 339 |
+
--batch_size auto
|
| 340 |
+
```
|
| 341 |
+
|
| 342 |
+
#### MMLU_COT_LLAMA
|
| 343 |
+
```
|
| 344 |
+
lm_eval \
|
| 345 |
+
--model vllm \
|
| 346 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
| 347 |
+
--tasks mmlu_cot_llama \
|
| 348 |
+
--apply_chat_template \
|
| 349 |
+
--fewshot_as_multiturn \
|
| 350 |
+
--batch_size auto
|
| 351 |
+
```
|
| 352 |
+
|
| 353 |
+
#### ARC-Challenge
|
| 354 |
+
```
|
| 355 |
+
lm_eval \
|
| 356 |
+
--model vllm \
|
| 357 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
| 358 |
+
--tasks arc_challenge_llama \
|
| 359 |
+
--apply_chat_template \
|
| 360 |
+
--batch_size auto
|
| 361 |
+
```
|
| 362 |
+
|
| 363 |
+
#### GSM-8K
|
| 364 |
+
```
|
| 365 |
+
lm_eval \
|
| 366 |
+
--model vllm \
|
| 367 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
| 368 |
+
--tasks gsm8k_llama \
|
| 369 |
+
--apply_chat_template \
|
| 370 |
+
--fewshot_as_multiturn \
|
| 371 |
+
--batch_size auto
|
| 372 |
+
```
|
| 373 |
+
|
| 374 |
+
#### Hellaswag
|
| 375 |
+
```
|
| 376 |
+
lm_eval \
|
| 377 |
+
--model vllm \
|
| 378 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
| 379 |
+
--tasks hellaswag \
|
| 380 |
+
--apply_chat_template \
|
| 381 |
+
--fewshot_as_multiturn \
|
| 382 |
+
--batch_size auto
|
| 383 |
+
```
|
| 384 |
+
|
| 385 |
+
#### Winogrande
|
| 386 |
+
```
|
| 387 |
+
lm_eval \
|
| 388 |
+
--model vllm \
|
| 389 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
| 390 |
+
--tasks winogrande \
|
| 391 |
+
--apply_chat_template \
|
| 392 |
+
--fewshot_as_multiturn \
|
| 393 |
+
--batch_size auto
|
| 394 |
+
```
|
| 395 |
+
|
| 396 |
+
#### TruthfulQA
|
| 397 |
+
```
|
| 398 |
+
lm_eval \
|
| 399 |
+
--model vllm \
|
| 400 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
|
| 401 |
+
--tasks truthfulqa \
|
| 402 |
+
--apply_chat_template \
|
| 403 |
+
--fewshot_as_multiturn \
|
| 404 |
+
--batch_size auto
|
| 405 |
+
```
|
| 406 |
+
|
| 407 |
+
#### OpenLLM v2
|
| 408 |
+
```
|
| 409 |
+
lm_eval \
|
| 410 |
+
--model vllm \
|
| 411 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
| 412 |
+
--apply_chat_template \
|
| 413 |
+
--fewshot_as_multiturn \
|
| 414 |
+
--tasks leaderboard \
|
| 415 |
+
--batch_size auto
|
| 416 |
+
```
|
| 417 |
+
|
| 418 |
+
#### HumanEval and HumanEval_64
|
| 419 |
+
```
|
| 420 |
+
lm_eval \
|
| 421 |
+
--model vllm \
|
| 422 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
| 423 |
+
--apply_chat_template \
|
| 424 |
+
--fewshot_as_multiturn \
|
| 425 |
+
--tasks humaneval_instruct \
|
| 426 |
+
--batch_size auto
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
lm_eval \
|
| 430 |
+
--model vllm \
|
| 431 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
| 432 |
+
--apply_chat_template \
|
| 433 |
+
--fewshot_as_multiturn \
|
| 434 |
+
--tasks humaneval_64_instruct \
|
| 435 |
+
--batch_size auto
|
| 436 |
+
```
|