vad-bert
A BERT-based model fine-tuned to predict Valence, Arousal, and Dominance (VAD) values from text.
Intended use
This model is intended for regression tasks on emotional dimensions. It outputs 3 float values corresponding to:
- Valence (pleasant vs unpleasant)
- Arousal (calm vs excited)
- Dominance (controlled vs in control)
Example
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("RobroKools/vad-bert")
model = AutoModelForSequenceClassification.from_pretrained("RobroKools/vad-bert")
inputs = tokenizer("I'm feeling great!", return_tensors="pt")
outputs = model(**inputs)
vad = outputs.logits.detach().squeeze().tolist()
print(vad) # [valence, arousal, dominance]
- Downloads last month
- 693
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for RobroKools/vad-bert
Base model
google-bert/bert-base-uncased