vad-bert

A BERT-based model fine-tuned to predict Valence, Arousal, and Dominance (VAD) values from text.

Intended use

This model is intended for regression tasks on emotional dimensions. It outputs 3 float values corresponding to:

  • Valence (pleasant vs unpleasant)
  • Arousal (calm vs excited)
  • Dominance (controlled vs in control)

Example

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("RobroKools/vad-bert")
model = AutoModelForSequenceClassification.from_pretrained("RobroKools/vad-bert")

inputs = tokenizer("I'm feeling great!", return_tensors="pt")
outputs = model(**inputs)

vad = outputs.logits.detach().squeeze().tolist()
print(vad)  # [valence, arousal, dominance]
Downloads last month
693
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobroKools/vad-bert

Finetuned
(5565)
this model

Dataset used to train RobroKools/vad-bert

Space using RobroKools/vad-bert 1