layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6840
  • Answer: {'precision': 0.7045203969128997, 'recall': 0.7898640296662547, 'f1': 0.7447552447552448, 'number': 809}
  • Header: {'precision': 0.3465346534653465, 'recall': 0.29411764705882354, 'f1': 0.3181818181818182, 'number': 119}
  • Question: {'precision': 0.7655709342560554, 'recall': 0.8309859154929577, 'f1': 0.7969383160738407, 'number': 1065}
  • Overall Precision: 0.7204
  • Overall Recall: 0.7822
  • Overall F1: 0.7501
  • Overall Accuracy: 0.8036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.81 1.0 10 1.6151 {'precision': 0.004709576138147566, 'recall': 0.003708281829419036, 'f1': 0.004149377593360995, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.1045016077170418, 'recall': 0.06103286384976526, 'f1': 0.07705986959098991, 'number': 1065} 0.0540 0.0341 0.0418 0.3338
1.4675 2.0 20 1.2857 {'precision': 0.20516129032258065, 'recall': 0.1965389369592089, 'f1': 0.20075757575757577, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4057971014492754, 'recall': 0.5258215962441315, 'f1': 0.45807770961145194, 'number': 1065} 0.3336 0.3608 0.3467 0.5615
1.1095 3.0 30 0.9749 {'precision': 0.4744136460554371, 'recall': 0.5500618046971569, 'f1': 0.5094447624499141, 'number': 809} {'precision': 0.02857142857142857, 'recall': 0.008403361344537815, 'f1': 0.012987012987012986, 'number': 119} {'precision': 0.5271260997067448, 'recall': 0.6751173708920187, 'f1': 0.592013174145739, 'number': 1065} 0.4985 0.5845 0.5381 0.6871
0.8396 4.0 40 0.7887 {'precision': 0.6004098360655737, 'recall': 0.7243510506798516, 'f1': 0.6565826330532212, 'number': 809} {'precision': 0.1016949152542373, 'recall': 0.05042016806722689, 'f1': 0.06741573033707866, 'number': 119} {'precision': 0.6529942575881871, 'recall': 0.7474178403755869, 'f1': 0.6970227670753065, 'number': 1065} 0.6158 0.6964 0.6536 0.7516
0.6706 5.0 50 0.7238 {'precision': 0.6403887688984882, 'recall': 0.7330037082818294, 'f1': 0.6835734870317004, 'number': 809} {'precision': 0.1875, 'recall': 0.12605042016806722, 'f1': 0.1507537688442211, 'number': 119} {'precision': 0.6530303030303031, 'recall': 0.8093896713615023, 'f1': 0.7228511530398324, 'number': 1065} 0.6320 0.7376 0.6807 0.7773
0.5725 6.0 60 0.6919 {'precision': 0.6587473002159827, 'recall': 0.754017305315204, 'f1': 0.7031700288184438, 'number': 809} {'precision': 0.24050632911392406, 'recall': 0.15966386554621848, 'f1': 0.1919191919191919, 'number': 119} {'precision': 0.7182978723404255, 'recall': 0.7924882629107981, 'f1': 0.7535714285714286, 'number': 1065} 0.6757 0.7391 0.7060 0.7819
0.4918 7.0 70 0.6613 {'precision': 0.685807150595883, 'recall': 0.7824474660074165, 'f1': 0.7309468822170901, 'number': 809} {'precision': 0.32941176470588235, 'recall': 0.23529411764705882, 'f1': 0.2745098039215686, 'number': 119} {'precision': 0.730092204526404, 'recall': 0.8178403755868544, 'f1': 0.7714791851195748, 'number': 1065} 0.6960 0.7687 0.7306 0.7954
0.4364 8.0 80 0.6622 {'precision': 0.6994475138121546, 'recall': 0.7824474660074165, 'f1': 0.7386231038506416, 'number': 809} {'precision': 0.25961538461538464, 'recall': 0.226890756302521, 'f1': 0.242152466367713, 'number': 119} {'precision': 0.7337826453243471, 'recall': 0.8178403755868544, 'f1': 0.7735346358792186, 'number': 1065} 0.6972 0.7682 0.7310 0.7961
0.3848 9.0 90 0.6633 {'precision': 0.7046460176991151, 'recall': 0.7873918417799752, 'f1': 0.7437244600116752, 'number': 809} {'precision': 0.3106796116504854, 'recall': 0.2689075630252101, 'f1': 0.28828828828828823, 'number': 119} {'precision': 0.7519446845289542, 'recall': 0.8169014084507042, 'f1': 0.7830783078307832, 'number': 1065} 0.7112 0.7722 0.7404 0.7973
0.3806 10.0 100 0.6619 {'precision': 0.6894679695982627, 'recall': 0.7849196538936959, 'f1': 0.7341040462427746, 'number': 809} {'precision': 0.29896907216494845, 'recall': 0.24369747899159663, 'f1': 0.2685185185185185, 'number': 119} {'precision': 0.7575236457437661, 'recall': 0.8272300469483568, 'f1': 0.7908438061041293, 'number': 1065} 0.7084 0.7752 0.7403 0.8005
0.3245 11.0 110 0.6781 {'precision': 0.7051569506726457, 'recall': 0.7775030902348579, 'f1': 0.7395649617871839, 'number': 809} {'precision': 0.32710280373831774, 'recall': 0.29411764705882354, 'f1': 0.3097345132743363, 'number': 119} {'precision': 0.7420701168614358, 'recall': 0.8347417840375587, 'f1': 0.7856827220503757, 'number': 1065} 0.7069 0.7792 0.7413 0.7994
0.3037 12.0 120 0.6741 {'precision': 0.7049723756906078, 'recall': 0.788627935723115, 'f1': 0.7444574095682615, 'number': 809} {'precision': 0.32, 'recall': 0.2689075630252101, 'f1': 0.2922374429223744, 'number': 119} {'precision': 0.7791519434628975, 'recall': 0.828169014084507, 'f1': 0.8029130632680928, 'number': 1065} 0.7263 0.7787 0.7516 0.8001
0.2917 13.0 130 0.6849 {'precision': 0.7, 'recall': 0.7787391841779975, 'f1': 0.7372732592159158, 'number': 809} {'precision': 0.32673267326732675, 'recall': 0.2773109243697479, 'f1': 0.30000000000000004, 'number': 119} {'precision': 0.7703056768558952, 'recall': 0.828169014084507, 'f1': 0.7981900452488688, 'number': 1065} 0.7199 0.7752 0.7466 0.8011
0.2692 14.0 140 0.6823 {'precision': 0.7019867549668874, 'recall': 0.7861557478368356, 'f1': 0.7416909620991254, 'number': 809} {'precision': 0.35051546391752575, 'recall': 0.2857142857142857, 'f1': 0.3148148148148148, 'number': 119} {'precision': 0.7642980935875217, 'recall': 0.828169014084507, 'f1': 0.7949526813880126, 'number': 1065} 0.7195 0.7787 0.7480 0.8019
0.2721 15.0 150 0.6840 {'precision': 0.7045203969128997, 'recall': 0.7898640296662547, 'f1': 0.7447552447552448, 'number': 809} {'precision': 0.3465346534653465, 'recall': 0.29411764705882354, 'f1': 0.3181818181818182, 'number': 119} {'precision': 0.7655709342560554, 'recall': 0.8309859154929577, 'f1': 0.7969383160738407, 'number': 1065} 0.7204 0.7822 0.7501 0.8036

Framework versions

  • Transformers 4.53.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
3
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for SeanLB/layoutlm-funsd

Finetuned
(178)
this model