CrossEncoder based on BAAI/bge-reranker-v2-m3

This is a Cross Encoder model finetuned from BAAI/bge-reranker-v2-m3 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: BAAI/bge-reranker-v2-m3
  • Maximum Sequence Length: 8192 tokens
  • Number of Output Labels: 1 label

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
    ["What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks?", '由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。\n\n\u3000\u3000设备企业:\n\n\n\u3000\u3000业绩翻倍增长\n\n\u3000\u3000虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。'],
    ['根据文中提到的上游、中游和下游的不同环节,请简要描述半导体产业链的整体结构。', 'DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。\n\nNAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。'],
    ['根据上下文信息,提出一个问题。', '半导体材料是制作晶体管、集成电路、光电子器件的重要材料。\n\n按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。'],
    ['What is the projected annual growth rate of the automotive semiconductor market from 2013 to 2018 according to IHS data?', '长电科技作为A股半导体封装测试龙头,第二季度业绩也环比大幅增长。业绩预告显示,今年上半年公司实现归母净利润为4.46亿元到5.46亿元,同比减少64.65%到71.08%。公司一季度实现归母净利润约1.1亿元,第二季度或实现盈利3.36亿至4.36亿元,环比一季度增长约两倍以上,公司不断投入汽车电子、工业电子及高性能计算等领域,为新一轮应用需求增长做好准备。此前,长电科技介绍,面向高算力芯片公司推出了Chiplet高性能封装技术平台XDFOI。'],
    ['你认为人工智能未来可能在哪些领域发挥作用?', '98亿元,其中,当期汇兑损失造成净利润减少约2.03亿元,剔除该因素,上半年公司净利润为正。通富微电介绍,全球半导体市场疲软,下游需求复苏不及预期,导致封测环节业务承压,公司传统业务亦受到较大影响。作为应对,公司调整产品布局,在高性能计算、新能源、汽车电子、存储、显示驱动等领域实现营收增长,积极推动Chiplet(芯粒)市场化应用,实现了规模性量产。'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    "What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks?",
    [
        '由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。\n\n\u3000\u3000设备企业:\n\n\n\u3000\u3000业绩翻倍增长\n\n\u3000\u3000虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。',
        'DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。\n\nNAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。',
        '半导体材料是制作晶体管、集成电路、光电子器件的重要材料。\n\n按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。',
        '长电科技作为A股半导体封装测试龙头,第二季度业绩也环比大幅增长。业绩预告显示,今年上半年公司实现归母净利润为4.46亿元到5.46亿元,同比减少64.65%到71.08%。公司一季度实现归母净利润约1.1亿元,第二季度或实现盈利3.36亿至4.36亿元,环比一季度增长约两倍以上,公司不断投入汽车电子、工业电子及高性能计算等领域,为新一轮应用需求增长做好准备。此前,长电科技介绍,面向高算力芯片公司推出了Chiplet高性能封装技术平台XDFOI。',
        '98亿元,其中,当期汇兑损失造成净利润减少约2.03亿元,剔除该因素,上半年公司净利润为正。通富微电介绍,全球半导体市场疲软,下游需求复苏不及预期,导致封测环节业务承压,公司传统业务亦受到较大影响。作为应对,公司调整产品布局,在高性能计算、新能源、汽车电子、存储、显示驱动等领域实现营收增长,积极推动Chiplet(芯粒)市场化应用,实现了规模性量产。',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.9177
mrr@10 0.9177
ndcg@10 0.9377

Training Details

Training Dataset

Unnamed Dataset

  • Size: 890 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 890 samples:
    sentence_0 sentence_1 label
    type string string int
    details
    • min: 13 characters
    • mean: 55.08 characters
    • max: 237 characters
    • min: 64 characters
    • mean: 179.63 characters
    • max: 249 characters
    • 0: ~80.00%
    • 1: ~20.00%
  • Samples:
    sentence_0 sentence_1 label
    What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks? 由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。

      设备企业:


      业绩翻倍增长

      虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。
    0
    根据文中提到的上游、中游和下游的不同环节,请简要描述半导体产业链的整体结构。 DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。

    NAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。
    0
    根据上下文信息,提出一个问题。 半导体材料是制作晶体管、集成电路、光电子器件的重要材料。

    按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。
    0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 2
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step train-eval_ndcg@10
0.8929 100 0.9377

Framework Versions

  • Python: 3.9.20
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.1
  • PyTorch: 2.4.1
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
7
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Setsuna007/ft-bge-reranker-v2-m3-test

Finetuned
(15)
this model

Evaluation results