Setsuna007 commited on
Commit
b70ff39
·
verified ·
1 Parent(s): 70a411d

精调reranker(测试)

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - cross-encoder
5
+ - reranker
6
+ - generated_from_trainer
7
+ - dataset_size:890
8
+ - loss:BinaryCrossEntropyLoss
9
+ base_model: BAAI/bge-reranker-v2-m3
10
+ pipeline_tag: text-ranking
11
+ library_name: sentence-transformers
12
+ metrics:
13
+ - map
14
+ - mrr@10
15
+ - ndcg@10
16
+ model-index:
17
+ - name: CrossEncoder based on BAAI/bge-reranker-v2-m3
18
+ results:
19
+ - task:
20
+ type: cross-encoder-reranking
21
+ name: Cross Encoder Reranking
22
+ dataset:
23
+ name: train eval
24
+ type: train-eval
25
+ metrics:
26
+ - type: map
27
+ value: 0.9176616915422886
28
+ name: Map
29
+ - type: mrr@10
30
+ value: 0.9176616915422886
31
+ name: Mrr@10
32
+ - type: ndcg@10
33
+ value: 0.9377252954601817
34
+ name: Ndcg@10
35
+ ---
36
+
37
+ # CrossEncoder based on BAAI/bge-reranker-v2-m3
38
+
39
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
40
+
41
+ ## Model Details
42
+
43
+ ### Model Description
44
+ - **Model Type:** Cross Encoder
45
+ - **Base model:** [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) <!-- at revision 953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e -->
46
+ - **Maximum Sequence Length:** 8192 tokens
47
+ - **Number of Output Labels:** 1 label
48
+ <!-- - **Training Dataset:** Unknown -->
49
+ <!-- - **Language:** Unknown -->
50
+ <!-- - **License:** Unknown -->
51
+
52
+ ### Model Sources
53
+
54
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
55
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
56
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
57
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
58
+
59
+ ## Usage
60
+
61
+ ### Direct Usage (Sentence Transformers)
62
+
63
+ First install the Sentence Transformers library:
64
+
65
+ ```bash
66
+ pip install -U sentence-transformers
67
+ ```
68
+
69
+ Then you can load this model and run inference.
70
+ ```python
71
+ from sentence_transformers import CrossEncoder
72
+
73
+ # Download from the 🤗 Hub
74
+ model = CrossEncoder("cross_encoder_model_id")
75
+ # Get scores for pairs of texts
76
+ pairs = [
77
+ ["What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks?", '由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。\n\n\u3000\u3000设备企业:\n\n\n\u3000\u3000业绩翻倍增长\n\n\u3000\u3000虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。'],
78
+ ['根据文中提到的上游、中游和下游的不同环节,请简要描述半导体产业链的整体结构。', 'DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。\n\nNAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。'],
79
+ ['根据上下文信息,提出一个问题。', '半导体材料是制作晶体管、集成电路、光电子器件的重要材料。\n\n按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。'],
80
+ ['What is the projected annual growth rate of the automotive semiconductor market from 2013 to 2018 according to IHS data?', '长电科技作为A股半导体封装测试龙头,第二季度业绩也环比大幅增长。业绩预告显示,今年上半年公司实现归母净利润为4.46亿元到5.46亿元,同比减少64.65%到71.08%。公司一季度实现归母净利润约1.1亿元,第二季度或实现盈利3.36亿至4.36亿元,环比一季度增长约两倍以上,公司不断投入汽车电子、工业电子及高性能计算等领域,为新一轮应用需求增长做好准备。此前,长电科技介绍,面向高算力芯片公司推出了Chiplet高性能封装技术平台XDFOI。'],
81
+ ['你认为人工智能未来可能在哪些领域发挥作用?', '98亿元,其中,当期汇兑损失造成净利润减少约2.03亿元,剔除该因素,上半年公司净利润为正。通富微电介绍,全球半导体市场疲软,下游需求复苏不及预期,导致封测环节业务承压,公司传统业务亦受到较大影响。作为应对,公司调整产品布局,在高性能计算、新能源、汽车电子、存储、显示驱动等领域实现营收增长,积极推动Chiplet(芯粒)市场化应用,实现了规模性量产。'],
82
+ ]
83
+ scores = model.predict(pairs)
84
+ print(scores.shape)
85
+ # (5,)
86
+
87
+ # Or rank different texts based on similarity to a single text
88
+ ranks = model.rank(
89
+ "What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks?",
90
+ [
91
+ '由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。\n\n\u3000\u3000设备企业:\n\n\n\u3000\u3000业绩翻倍增长\n\n\u3000\u3000虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。',
92
+ 'DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。\n\nNAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。',
93
+ '半导体材料是制作晶体管、集成电路、光电子器件的重要材料。\n\n按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。',
94
+ '长电科技作为A股半导体封装测试龙头,第二季度业绩也环比大幅增长。业绩预告显示,今年上半年公司实现归母净利润为4.46亿元到5.46亿元,同比减少64.65%到71.08%。公司一季度实现归母净利润约1.1亿元,第二季度或实现盈利3.36亿至4.36亿元,环比一季度增长约两倍以上,公司不断投入汽车电子、工业电子及高性能计算等领域,为新一轮应用需求增长做好准备。此前,长电科技介绍,面向高算力芯片公司推出了Chiplet高性能封装技术平台XDFOI。',
95
+ '98亿元,其中,当期汇兑损失造成净利润减少约2.03亿元,剔除该因素,上半年公司净利润为正。通富微电介绍,全球半导体市场疲软,下游需求复苏不及预期,导致封测环节业务承压,公司传统业务亦受到较大影响。作为应对,公司调整产品布局,在高性能计算、新能源、汽车电子、存储、显示驱动等领域实现营收增长,积极推动Chiplet(芯粒)市场化应用,实现了规模性量产。',
96
+ ]
97
+ )
98
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
99
+ ```
100
+
101
+ <!--
102
+ ### Direct Usage (Transformers)
103
+
104
+ <details><summary>Click to see the direct usage in Transformers</summary>
105
+
106
+ </details>
107
+ -->
108
+
109
+ <!--
110
+ ### Downstream Usage (Sentence Transformers)
111
+
112
+ You can finetune this model on your own dataset.
113
+
114
+ <details><summary>Click to expand</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Out-of-Scope Use
121
+
122
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
123
+ -->
124
+
125
+ ## Evaluation
126
+
127
+ ### Metrics
128
+
129
+ #### Cross Encoder Reranking
130
+
131
+ * Dataset: `train-eval`
132
+ * Evaluated with [<code>CERerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator) with these parameters:
133
+ ```json
134
+ {
135
+ "at_k": 10
136
+ }
137
+ ```
138
+
139
+ | Metric | Value |
140
+ |:------------|:-----------|
141
+ | map | 0.9177 |
142
+ | mrr@10 | 0.9177 |
143
+ | **ndcg@10** | **0.9377** |
144
+
145
+ <!--
146
+ ## Bias, Risks and Limitations
147
+
148
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
149
+ -->
150
+
151
+ <!--
152
+ ### Recommendations
153
+
154
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
155
+ -->
156
+
157
+ ## Training Details
158
+
159
+ ### Training Dataset
160
+
161
+ #### Unnamed Dataset
162
+
163
+ * Size: 890 training samples
164
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
165
+ * Approximate statistics based on the first 890 samples:
166
+ | | sentence_0 | sentence_1 | label |
167
+ |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
168
+ | type | string | string | int |
169
+ | details | <ul><li>min: 13 characters</li><li>mean: 55.08 characters</li><li>max: 237 characters</li></ul> | <ul><li>min: 64 characters</li><li>mean: 179.63 characters</li><li>max: 249 characters</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> |
170
+ * Samples:
171
+ | sentence_0 | sentence_1 | label |
172
+ |:------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
173
+ | <code>What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks?</code> | <code>由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。<br><br>  设备企业:<br><br><br>  业绩翻倍增长<br><br>  虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。</code> | <code>0</code> |
174
+ | <code>根据文中提到的上游、中游和下游的不同环节,请简要描述半导体产业链的整体结构。</code> | <code>DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。<br><br>NAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。</code> | <code>0</code> |
175
+ | <code>根据上下文信息,提出一个问题。</code> | <code>半导体材料是制作晶体管、集成电路、光电子器件的重要材料。<br><br>按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。</code> | <code>0</code> |
176
+ * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
177
+ ```json
178
+ {
179
+ "activation_fn": "torch.nn.modules.linear.Identity",
180
+ "pos_weight": null
181
+ }
182
+ ```
183
+
184
+ ### Training Hyperparameters
185
+ #### Non-Default Hyperparameters
186
+
187
+ - `eval_strategy`: steps
188
+ - `num_train_epochs`: 2
189
+ - `fp16`: True
190
+
191
+ #### All Hyperparameters
192
+ <details><summary>Click to expand</summary>
193
+
194
+ - `overwrite_output_dir`: False
195
+ - `do_predict`: False
196
+ - `eval_strategy`: steps
197
+ - `prediction_loss_only`: True
198
+ - `per_device_train_batch_size`: 8
199
+ - `per_device_eval_batch_size`: 8
200
+ - `per_gpu_train_batch_size`: None
201
+ - `per_gpu_eval_batch_size`: None
202
+ - `gradient_accumulation_steps`: 1
203
+ - `eval_accumulation_steps`: None
204
+ - `torch_empty_cache_steps`: None
205
+ - `learning_rate`: 5e-05
206
+ - `weight_decay`: 0.0
207
+ - `adam_beta1`: 0.9
208
+ - `adam_beta2`: 0.999
209
+ - `adam_epsilon`: 1e-08
210
+ - `max_grad_norm`: 1
211
+ - `num_train_epochs`: 2
212
+ - `max_steps`: -1
213
+ - `lr_scheduler_type`: linear
214
+ - `lr_scheduler_kwargs`: {}
215
+ - `warmup_ratio`: 0.0
216
+ - `warmup_steps`: 0
217
+ - `log_level`: passive
218
+ - `log_level_replica`: warning
219
+ - `log_on_each_node`: True
220
+ - `logging_nan_inf_filter`: True
221
+ - `save_safetensors`: True
222
+ - `save_on_each_node`: False
223
+ - `save_only_model`: False
224
+ - `restore_callback_states_from_checkpoint`: False
225
+ - `no_cuda`: False
226
+ - `use_cpu`: False
227
+ - `use_mps_device`: False
228
+ - `seed`: 42
229
+ - `data_seed`: None
230
+ - `jit_mode_eval`: False
231
+ - `use_ipex`: False
232
+ - `bf16`: False
233
+ - `fp16`: True
234
+ - `fp16_opt_level`: O1
235
+ - `half_precision_backend`: auto
236
+ - `bf16_full_eval`: False
237
+ - `fp16_full_eval`: False
238
+ - `tf32`: None
239
+ - `local_rank`: 0
240
+ - `ddp_backend`: None
241
+ - `tpu_num_cores`: None
242
+ - `tpu_metrics_debug`: False
243
+ - `debug`: []
244
+ - `dataloader_drop_last`: False
245
+ - `dataloader_num_workers`: 0
246
+ - `dataloader_prefetch_factor`: None
247
+ - `past_index`: -1
248
+ - `disable_tqdm`: False
249
+ - `remove_unused_columns`: True
250
+ - `label_names`: None
251
+ - `load_best_model_at_end`: False
252
+ - `ignore_data_skip`: False
253
+ - `fsdp`: []
254
+ - `fsdp_min_num_params`: 0
255
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
256
+ - `fsdp_transformer_layer_cls_to_wrap`: None
257
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
258
+ - `deepspeed`: None
259
+ - `label_smoothing_factor`: 0.0
260
+ - `optim`: adamw_torch
261
+ - `optim_args`: None
262
+ - `adafactor`: False
263
+ - `group_by_length`: False
264
+ - `length_column_name`: length
265
+ - `ddp_find_unused_parameters`: None
266
+ - `ddp_bucket_cap_mb`: None
267
+ - `ddp_broadcast_buffers`: False
268
+ - `dataloader_pin_memory`: True
269
+ - `dataloader_persistent_workers`: False
270
+ - `skip_memory_metrics`: True
271
+ - `use_legacy_prediction_loop`: False
272
+ - `push_to_hub`: False
273
+ - `resume_from_checkpoint`: None
274
+ - `hub_model_id`: None
275
+ - `hub_strategy`: every_save
276
+ - `hub_private_repo`: None
277
+ - `hub_always_push`: False
278
+ - `hub_revision`: None
279
+ - `gradient_checkpointing`: False
280
+ - `gradient_checkpointing_kwargs`: None
281
+ - `include_inputs_for_metrics`: False
282
+ - `include_for_metrics`: []
283
+ - `eval_do_concat_batches`: True
284
+ - `fp16_backend`: auto
285
+ - `push_to_hub_model_id`: None
286
+ - `push_to_hub_organization`: None
287
+ - `mp_parameters`:
288
+ - `auto_find_batch_size`: False
289
+ - `full_determinism`: False
290
+ - `torchdynamo`: None
291
+ - `ray_scope`: last
292
+ - `ddp_timeout`: 1800
293
+ - `torch_compile`: False
294
+ - `torch_compile_backend`: None
295
+ - `torch_compile_mode`: None
296
+ - `include_tokens_per_second`: False
297
+ - `include_num_input_tokens_seen`: False
298
+ - `neftune_noise_alpha`: None
299
+ - `optim_target_modules`: None
300
+ - `batch_eval_metrics`: False
301
+ - `eval_on_start`: False
302
+ - `use_liger_kernel`: False
303
+ - `liger_kernel_config`: None
304
+ - `eval_use_gather_object`: False
305
+ - `average_tokens_across_devices`: False
306
+ - `prompts`: None
307
+ - `batch_sampler`: batch_sampler
308
+ - `multi_dataset_batch_sampler`: proportional
309
+ - `router_mapping`: {}
310
+ - `learning_rate_mapping`: {}
311
+
312
+ </details>
313
+
314
+ ### Training Logs
315
+ | Epoch | Step | train-eval_ndcg@10 |
316
+ |:------:|:----:|:------------------:|
317
+ | 0.8929 | 100 | 0.9377 |
318
+
319
+
320
+ ### Framework Versions
321
+ - Python: 3.9.20
322
+ - Sentence Transformers: 5.0.0
323
+ - Transformers: 4.53.1
324
+ - PyTorch: 2.4.1
325
+ - Accelerate: 1.8.1
326
+ - Datasets: 3.6.0
327
+ - Tokenizers: 0.21.2
328
+
329
+ ## Citation
330
+
331
+ ### BibTeX
332
+
333
+ #### Sentence Transformers
334
+ ```bibtex
335
+ @inproceedings{reimers-2019-sentence-bert,
336
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
337
+ author = "Reimers, Nils and Gurevych, Iryna",
338
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
339
+ month = "11",
340
+ year = "2019",
341
+ publisher = "Association for Computational Linguistics",
342
+ url = "https://arxiv.org/abs/1908.10084",
343
+ }
344
+ ```
345
+
346
+ <!--
347
+ ## Glossary
348
+
349
+ *Clearly define terms in order to be accessible across audiences.*
350
+ -->
351
+
352
+ <!--
353
+ ## Model Card Authors
354
+
355
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
356
+ -->
357
+
358
+ <!--
359
+ ## Model Card Contact
360
+
361
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
362
+ -->
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-05,
21
+ "max_position_embeddings": 8194,
22
+ "model_type": "xlm-roberta",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "output_past": true,
26
+ "pad_token_id": 1,
27
+ "position_embedding_type": "absolute",
28
+ "sentence_transformers": {
29
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
30
+ "version": "5.0.0"
31
+ },
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.53.1",
34
+ "type_vocab_size": 1,
35
+ "use_cache": true,
36
+ "vocab_size": 250002
37
+ }
eval/[email protected] ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ epoch,steps,MAP,MRR@10,NDCG@10
2
+ 1.0,112,0.9110696517412935,0.9110696517412935,0.932689821546672
3
+ 2.0,224,0.9126865671641791,0.9126865671641791,0.9342285502703875
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:018b884f1971116ac3cfd5bf9720b5aa7a07026fcebc9c44c74455f05923dfcf
3
+ size 2271071852
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:222975faa02f5257c6e8c734e85973e48c8d42d7d37d90b894c73efa1841d76a
3
+ size 17083154
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }