SentenceTransformer based on cl-nagoya/ruri-large-v2
This is a sentence-transformers model finetuned from cl-nagoya/ruri-large-v2 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cl-nagoya/ruri-large-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Smrfhdl/ruri-large-v2-triplet-fine-tuned-v5")
# Run inference
sentences = [
'払込票の期限が11月末で切れており支払いができない状態',
'11月払込票の有効期限が過ぎ、新しい払込票が必要な状況',
'11月満期保険金の受取期限が過ぎ、新規請求手続きが必要な状態',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
train-eval,dev-evalandtest-eval - Evaluated with
TripletEvaluator
| Metric | train-eval | dev-eval | test-eval |
|---|---|---|---|
| cosine_accuracy | 1.0 | 0.97 | 0.98 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 800 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 800 samples:
anchor positive negative type string string string details - min: 8 tokens
- mean: 21.52 tokens
- max: 40 tokens
- min: 8 tokens
- mean: 24.07 tokens
- max: 43 tokens
- min: 6 tokens
- mean: 20.14 tokens
- max: 38 tokens
- Samples:
anchor positive negative 赤坂桃子さんの手術給付金請求条件を教えて1991年7月生まれの契約者のパーキンソン病手術保障佐野千恵様の死亡保険給付遅延の理由を説明給付金請求書を11月19日に発送したのですが、到着は確認されていますか?先月19日に投函した請求書類、既に事務所には届きましたか保険料のコンビニ支払い用紙はいつ頃届く予定ですか?妻が肝炎で入院し保険金を請求したいが必要書類が不明主人が膵炎で手術入院した際の給付申請で診断書不足に困った妻が肝炎で入院したため健康保険の資格喪失手続きをしたい - Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.2 }
Evaluation Dataset
json
- Dataset: json
- Size: 100 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 100 samples:
anchor positive negative type string string string details - min: 10 tokens
- mean: 21.4 tokens
- max: 41 tokens
- min: 12 tokens
- mean: 23.57 tokens
- max: 40 tokens
- min: 9 tokens
- mean: 19.11 tokens
- max: 32 tokens
- Samples:
anchor positive negative 11月19日に送った書類の到着は確認済みですか?先月下旬に郵送した請求書類の受領状況を確かめるには?保険証券の紛失届を出したいのですが手続きを教えてください歯根たん切除手術の保険適用について確認したい歯科治療の支払いが保険の対象かどうかを教えてほしい生命保険の契約内容を変更したいのですがクレジットカード番号変更による保険料支払い継続手続き新しいクレジットカードへ切替えて保険料引き落とし継続する手順銀行口座変更による給与天引きの停止申請方法 - Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.2 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 30warmup_ratio: 0.05fp16: Truedataloader_num_workers: 4load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 30max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | train-eval_cosine_accuracy | dev-eval_cosine_accuracy | test-eval_cosine_accuracy |
|---|---|---|---|---|---|---|
| 0.3077 | 4 | 0.1013 | 0.0764 | 0.9525 | 0.9300 | - |
| 0.6154 | 8 | 0.075 | 0.0372 | 0.9625 | 0.9300 | - |
| 0.9231 | 12 | 0.0345 | 0.0225 | 0.9700 | 0.9500 | - |
| 1.2308 | 16 | 0.0206 | 0.0185 | 0.9675 | 0.9700 | - |
| 1.5385 | 20 | 0.0199 | 0.0157 | 0.9837 | 0.9700 | - |
| 1.8462 | 24 | 0.0201 | 0.0176 | 0.9937 | 0.9800 | - |
| 2.1538 | 28 | 0.0125 | 0.0163 | 1.0 | 0.9600 | - |
| 2.4615 | 32 | 0.0053 | 0.0118 | 1.0 | 0.9700 | - |
| -1 | -1 | - | - | - | - | 0.9800 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- -
Model tree for Smrfhdl/ruri-large-v2-triplet-fine-tuned-v5
Base model
tohoku-nlp/bert-large-japanese-v2
Finetuned
cl-nagoya/ruri-pt-large-v2
Finetuned
cl-nagoya/ruri-large-v2
Evaluation results
- Cosine Accuracy on train evalself-reported1.000
- Cosine Accuracy on dev evalself-reported0.970
- Cosine Accuracy on test evalself-reported0.980