Tejveer12's picture
Upload WhisperForConditionalGeneration
df4e276 verified
metadata
library_name: transformers
language:
  - en
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - WillHeld/india_accent_cv
metrics:
  - wer
model-index:
  - name: Whisper Indian English Acccent
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Indian English Accent
          type: WillHeld/india_accent_cv
          args: 'split: train'
        metrics:
          - type: wer
            value: 7.5056000168263415
            name: Wer

Whisper Indian English Acccent

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Indian English Accent dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2065
  • Wer: 7.5056

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.342 0.1943 1000 0.3226 14.1310
0.2741 0.3885 2000 0.3130 13.9553
0.2576 0.5828 3000 0.2967 12.9931
0.2825 0.7770 4000 0.2692 12.3390
0.2295 0.9713 5000 0.2565 11.8331
0.1489 1.1655 6000 0.2498 11.6933
0.1485 1.3598 7000 0.2452 11.1411
0.1385 1.5540 8000 0.2346 10.4428
0.1253 1.7483 9000 0.2254 10.1852
0.1297 1.9425 10000 0.2144 9.7109
0.0594 2.1368 11000 0.2174 9.5363
0.0629 2.3310 12000 0.2136 9.8276
0.0654 2.5253 13000 0.2102 9.4301
0.0625 2.7195 14000 0.2075 8.9432
0.0574 2.9138 15000 0.2009 8.7802
0.0276 3.1080 16000 0.2050 8.4594
0.0251 3.3023 17000 0.2046 8.5951
0.0246 3.4965 18000 0.2035 8.1187
0.0259 3.6908 19000 0.2002 8.0588
0.021 3.8850 20000 0.1951 7.9147
0.0072 4.0793 21000 0.2053 7.7548
0.0067 4.2735 22000 0.2085 7.4972
0.0067 4.4678 23000 0.2094 7.6970
0.0062 4.6620 24000 0.2071 7.7433
0.0046 4.8563 25000 0.2065 7.5056

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 3.3.2
  • Tokenizers 0.21.0