SentenceTransformer based on FremyCompany/BioLORD-2023-M-Dutch-InContext-v1

This is a sentence-transformers from, simply the FremyCompany/BioLORD-2023-M-Dutch-InContext-v1 model but with bf16 instead of float32. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 25, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6914, 0.4062],
#         [0.6914, 1.0000, 0.3145],
#         [0.4062, 0.3145, 1.0000]], dtype=torch.bfloat16)

Training Details

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 5.0.0
  • Transformers: 4.48.0
  • PyTorch: 2.5.0+cu121
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

This model accompanies the BioLORD-2023: Learning Ontological Representations from Definitions paper. When you use this model, please cite the original paper as follows:

@article{remy-etal-2023-biolord,
    author = {Remy, François and Demuynck, Kris and Demeester, Thomas},
    title = "{BioLORD-2023: semantic textual representations fusing large language models and clinical knowledge graph insights}",
    journal = {Journal of the American Medical Informatics Association},
    pages = {ocae029},
    year = {2024},
    month = {02},
    issn = {1527-974X},
    doi = {10.1093/jamia/ocae029},
    url = {https://doi.org/10.1093/jamia/ocae029},
    eprint = {https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocae029/56772025/ocae029.pdf},
}

BibTeX

Downloads last month
15
Safetensors
Model size
278M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for UMCU/BioLORD-2023-M-Dutch-InContext-v1-ST_bf16

Finetuned
(1)
this model