|
--- |
|
library_name: transformers.js |
|
tags: |
|
- pose-estimation |
|
license: agpl-3.0 |
|
--- |
|
|
|
YOLOv8x-pose with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
**Example:** Perform pose-estimation w/ `Xenova/yolov8x-pose`. |
|
|
|
```js |
|
import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers'; |
|
|
|
// Load model and processor |
|
const model_id = 'Xenova/yolov8x-pose'; |
|
const model = await AutoModel.from_pretrained(model_id); |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
|
|
// Read image and run processor |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'; |
|
const image = await RawImage.read(url); |
|
const { pixel_values } = await processor(image); |
|
|
|
// Set thresholds |
|
const threshold = 0.3; // Remove detections with low confidence |
|
const iouThreshold = 0.5; // Used to remove duplicates |
|
const pointThreshold = 0.3; // Hide uncertain points |
|
|
|
// Predict bounding boxes and keypoints |
|
const { output0 } = await model({ images: pixel_values }); |
|
|
|
// Post-process: |
|
const permuted = output0[0].transpose(1, 0); |
|
// `permuted` is a Tensor of shape [ 8400, 56 ]: |
|
// - 8400 potential detections |
|
// - 56 parameters for each box: |
|
// - 4 for the bounding box dimensions (x-center, y-center, width, height) |
|
// - 1 for the confidence score |
|
// - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy) |
|
|
|
// Example code to format it nicely: |
|
const results = []; |
|
const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2); |
|
for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) { |
|
if (score < threshold) continue; |
|
|
|
// Get pixel values, taking into account the original image size |
|
const x1 = (xc - w / 2) / scaledWidth * image.width; |
|
const y1 = (yc - h / 2) / scaledHeight * image.height; |
|
const x2 = (xc + w / 2) / scaledWidth * image.width; |
|
const y2 = (yc + h / 2) / scaledHeight * image.height; |
|
results.push({ x1, x2, y1, y2, score, keypoints }); |
|
} |
|
|
|
|
|
// Define helper functions |
|
function removeDuplicates(detections, iouThreshold) { |
|
const filteredDetections = []; |
|
|
|
for (const detection of detections) { |
|
let isDuplicate = false; |
|
let duplicateIndex = -1; |
|
let maxIoU = 0; |
|
|
|
for (let i = 0; i < filteredDetections.length; ++i) { |
|
const filteredDetection = filteredDetections[i]; |
|
const iou = calculateIoU(detection, filteredDetection); |
|
if (iou > iouThreshold) { |
|
isDuplicate = true; |
|
if (iou > maxIoU) { |
|
maxIoU = iou; |
|
duplicateIndex = i; |
|
} |
|
} |
|
} |
|
|
|
if (!isDuplicate) { |
|
filteredDetections.push(detection); |
|
} else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) { |
|
filteredDetections[duplicateIndex] = detection; |
|
} |
|
} |
|
|
|
return filteredDetections; |
|
} |
|
|
|
function calculateIoU(detection1, detection2) { |
|
const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1)); |
|
const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1)); |
|
const overlapArea = xOverlap * yOverlap; |
|
|
|
const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1); |
|
const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1); |
|
const unionArea = area1 + area2 - overlapArea; |
|
|
|
return overlapArea / unionArea; |
|
} |
|
|
|
const filteredResults = removeDuplicates(results, iouThreshold); |
|
|
|
// Display results |
|
for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) { |
|
console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`); |
|
for (let i = 0; i < keypoints.length; i += 3) { |
|
const label = model.config.id2label[Math.floor(i / 3)]; |
|
const [x, y, point_score] = keypoints.slice(i, i + 3); |
|
if (point_score < pointThreshold) continue; |
|
console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`); |
|
} |
|
} |
|
``` |
|
|
|
<details> |
|
|
|
<summary>See example output</summary> |
|
|
|
``` |
|
Found person at [535.7708740234375, 45.77457022666931, 644.4645690917969, 312.20427117347714] with score 0.697 |
|
- nose: (441.61, 87.47) with score 0.966 |
|
- left_eye: (449.36, 79.91) with score 0.988 |
|
- right_eye: (436.36, 79.56) with score 0.850 |
|
- left_ear: (462.02, 83.57) with score 0.919 |
|
- left_shoulder: (478.73, 127.16) with score 0.994 |
|
- right_shoulder: (420.37, 126.47) with score 0.703 |
|
- left_elbow: (503.33, 180.38) with score 0.977 |
|
- left_wrist: (506.53, 236.52) with score 0.924 |
|
- left_hip: (470.67, 223.60) with score 0.982 |
|
- right_hip: (432.32, 223.90) with score 0.851 |
|
- left_knee: (470.86, 306.20) with score 0.949 |
|
- right_knee: (428.56, 306.69) with score 0.601 |
|
- left_ankle: (463.92, 383.59) with score 0.737 |
|
Found person at [-0.06377220153808594, 61.59769003391266, 156.24676704406738, 370.5519897222519] with score 0.926 |
|
- nose: (59.61, 100.49) with score 0.979 |
|
- left_eye: (66.44, 96.11) with score 0.954 |
|
- right_eye: (55.82, 96.21) with score 0.908 |
|
- left_ear: (76.90, 98.52) with score 0.819 |
|
- right_ear: (49.82, 102.11) with score 0.571 |
|
- left_shoulder: (87.07, 135.82) with score 0.990 |
|
- right_shoulder: (36.53, 134.96) with score 0.987 |
|
- left_elbow: (102.21, 193.66) with score 0.970 |
|
- right_elbow: (24.85, 187.30) with score 0.947 |
|
- left_wrist: (110.61, 245.75) with score 0.962 |
|
- right_wrist: (6.28, 233.46) with score 0.939 |
|
- left_hip: (82.71, 230.04) with score 0.997 |
|
- right_hip: (48.15, 235.65) with score 0.995 |
|
- left_knee: (95.27, 321.57) with score 0.993 |
|
- right_knee: (52.73, 320.56) with score 0.991 |
|
- left_ankle: (100.90, 415.89) with score 0.948 |
|
- right_ankle: (56.65, 417.09) with score 0.942 |
|
Found person at [109.67742919921875, 12.466975402832032, 501.75636291503906, 533.3693368911744] with score 0.934 |
|
- nose: (126.43, 96.98) with score 0.715 |
|
- left_eye: (126.52, 88.36) with score 0.664 |
|
- left_ear: (136.92, 78.79) with score 0.934 |
|
- left_shoulder: (191.69, 125.31) with score 0.998 |
|
- right_shoulder: (166.08, 138.95) with score 0.993 |
|
- left_elbow: (254.38, 194.23) with score 0.997 |
|
- right_elbow: (186.09, 258.25) with score 0.986 |
|
- left_wrist: (309.75, 260.93) with score 0.990 |
|
- right_wrist: (133.20, 283.14) with score 0.973 |
|
- left_hip: (281.07, 280.72) with score 1.000 |
|
- right_hip: (258.20, 300.47) with score 1.000 |
|
- left_knee: (228.48, 442.67) with score 0.999 |
|
- right_knee: (250.90, 474.40) with score 0.999 |
|
- left_ankle: (343.96, 435.26) with score 0.979 |
|
- right_ankle: (340.41, 601.64) with score 0.971 |
|
Found person at [422.38683700561523, 67.97338972091676, 638.0375099182129, 493.7016093254089] with score 0.932 |
|
- nose: (417.60, 144.74) with score 0.989 |
|
- left_eye: (426.67, 134.88) with score 0.959 |
|
- right_eye: (410.81, 135.93) with score 0.952 |
|
- left_ear: (443.39, 137.08) with score 0.771 |
|
- right_ear: (400.11, 142.05) with score 0.753 |
|
- left_shoulder: (446.92, 202.43) with score 0.997 |
|
- right_shoulder: (374.31, 196.36) with score 0.993 |
|
- left_elbow: (458.77, 287.40) with score 0.990 |
|
- right_elbow: (355.46, 260.60) with score 0.971 |
|
- left_wrist: (488.87, 354.68) with score 0.984 |
|
- right_wrist: (402.03, 263.57) with score 0.978 |
|
- left_hip: (432.69, 349.58) with score 0.998 |
|
- right_hip: (381.51, 366.30) with score 0.996 |
|
- left_knee: (463.97, 447.94) with score 0.991 |
|
- right_knee: (403.90, 511.95) with score 0.978 |
|
- left_ankle: (450.14, 562.29) with score 0.889 |
|
- right_ankle: (436.81, 548.29) with score 0.759 |
|
``` |
|
</details> |