finbert-custom-sentiment
This model is a fine-tuned version of ProsusAI/finbert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1984
- Accuracy: 0.9370
- Precision Macro: 0.9373
- Recall Macro: 0.9345
- F1 Macro: 0.9357
- Precision Weighted: 0.9372
- Recall Weighted: 0.9370
- F1 Weighted: 0.9369
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|
0.2343 | 1.0 | 64 | 0.2211 | 0.9252 | 0.9235 | 0.9248 | 0.9239 | 0.9255 | 0.9252 | 0.9251 |
0.1129 | 2.0 | 128 | 0.2009 | 0.9350 | 0.9340 | 0.9330 | 0.9334 | 0.9349 | 0.9350 | 0.9349 |
0.1176 | 3.0 | 192 | 0.1984 | 0.9370 | 0.9373 | 0.9345 | 0.9357 | 0.9372 | 0.9370 | 0.9369 |
Framework versions
- Transformers 4.54.0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for YG0713/finbert-custom-sentiment
Base model
ProsusAI/finbert