Whisper tiny En v6 Naji
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6790
- Wer Ortho: 29.6940
- Wer: 20.9923
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|---|---|---|---|---|---|
| 2.0788 | 0.0824 | 50 | 2.4317 | 32.8217 | 23.5413 |
| 1.1756 | 0.1647 | 100 | 1.4161 | 33.8546 | 24.7759 |
| 0.3704 | 0.2471 | 150 | 0.7644 | 31.5185 | 23.9919 |
| 0.3139 | 0.3295 | 200 | 0.7199 | 30.0753 | 21.7199 |
| 0.3249 | 0.4119 | 250 | 0.6991 | 29.9208 | 21.6495 |
| 0.3264 | 0.4942 | 300 | 0.6930 | 29.6216 | 21.3773 |
| 0.3069 | 0.5766 | 350 | 0.6848 | 29.7616 | 21.5838 |
| 0.2899 | 0.6590 | 400 | 0.6806 | 29.2161 | 20.6591 |
| 0.293 | 0.7414 | 450 | 0.6765 | 29.4140 | 20.8468 |
| 0.3009 | 0.8237 | 500 | 0.6790 | 29.6940 | 20.9923 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.6
- Tokenizers 0.21.1
- Downloads last month
- 3
Model tree for ahmedlh/whisper-tiny-en_v8
Base model
openai/whisper-tiny