LoRA Fine-tuned Pythia-410M
This model is a LoRA (Low-Rank Adaptation) fine-tuned version of EleutherAI/pythia-410m.
Model Details
- Base Model: EleutherAI/pythia-410m
- Training Method: LoRA (Low-Rank Adaptation)
- Parameters: ~410M (base) + LoRA adapters
- Memory Efficient: Uses 4-bit quantization for inference
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Load tokenizer and base model
tokenizer = AutoTokenizer.from_pretrained("akp4u/amit-gc")
base_model = AutoModelForCausalLM.from_pretrained(
"EleutherAI/pythia-410m",
load_in_4bit=True,
device_map="auto",
torch_dtype=torch.float16
)
# Load LoRA adapters
model = PeftModel.from_pretrained(base_model, "akp4u/amit-gc")
# Generate text
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=100,
do_sample=True,
temperature=0.7,
top_p=0.9
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Training
This model was fine-tuned using the LoRA technique on custom documents.
Limitations
- This is a small model (410M parameters) suitable for experimentation
- Generated text quality may vary depending on the training data
- Best used for specific domain tasks related to the training data
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for akp4u/amit-gc
Base model
EleutherAI/pythia-410m