Amit-GC Trained Model
This is a LoRA fine-tuned version of EleutherAI/pythia-410m, trained on Grey Chain content about AI and digital transformation.
Model Details
- Base Model: EleutherAI/pythia-410m (410M parameters)
- Training Method: LoRA (Low-Rank Adaptation)
- Training Data: Grey Chain content about AI & digital transformation
- Trainable Parameters: ~0.77% of base model
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Load tokenizer and base model
tokenizer = AutoTokenizer.from_pretrained("akp4u/amit-gc-trained-model")
base_model = AutoModelForCausalLM.from_pretrained(
"EleutherAI/pythia-410m",
device_map="cpu",
torch_dtype=torch.float32
)
# Load LoRA adapters
model = PeftModel.from_pretrained(base_model, "akp4u/amit-gc-trained-model")
# Generate text
prompt = "What is Grey Chain?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Training Details
- Trained for 3 epochs on Grey Chain content
- Uses LoRA with r=8, alpha=16, dropout=0.05
- Optimized for Mac/CPU inference (no quantization required)
Sample Outputs
The model can answer questions about:
- Grey Chain services and capabilities
- AI and digital transformation
- Machine learning concepts
- Prompt engineering
Limitations
- Small model (410M parameters) - responses may be limited
- Trained on specific domain content
- Best for Grey Chain and AI-related queries
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for akp4u/amit-gc-trained-model
Base model
EleutherAI/pythia-410m