wav2vec2-large-xlsr-coraa-aug-texts-exp-1

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2603
  • Wer: 0.1877
  • Cer: 0.1189
  • Per: 0.1368

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Per
0.0959 1.0 64 0.2713 0.1881 0.1202 0.1385
0.1109 2.0 128 0.2630 0.1913 0.1188 0.1358
0.1109 3.0 192 0.2906 0.1917 0.1208 0.1383
0.1099 4.0 256 0.2603 0.1877 0.1189 0.1368
0.0986 5.0 320 0.2733 0.1889 0.1192 0.1364
0.0986 6.0 384 0.2649 0.1868 0.1191 0.1360
0.0949 7.0 448 0.2987 0.1935 0.1223 0.1387
0.1037 8.0 512 0.2819 0.1868 0.1192 0.1361
0.1037 9.0 576 0.2867 0.1870 0.1183 0.1352
0.0857 10.0 640 0.2928 0.1836 0.1181 0.1352
0.0803 11.0 704 0.2896 0.1864 0.1191 0.1358
0.0803 12.0 768 0.2733 0.1799 0.1164 0.1333
0.0869 13.0 832 0.2648 0.1819 0.1172 0.1342
0.0869 14.0 896 0.2800 0.1860 0.1184 0.1353

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.13.3
Downloads last month
53
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support