whisper-small-tr / README.md
alperiox's picture
End of training
0c0f883 verified
metadata
library_name: transformers
language:
  - tr
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper small tr test
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: tr
          split: None
          args: 'config: tr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 20.4853955547986

whisper small tr test

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2394
  • Wer: 20.4854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1898 0.6892 500 0.2532 22.0318
0.1037 1.3777 1000 0.2420 20.7698
0.0658 2.0662 1500 0.2383 20.3185
0.0622 2.7553 2000 0.2394 20.4854

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.2