amaye15's picture
End of training
6e535e3 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ViT-Base-Document-Classifier
    results: []

ViT-Base-Document-Classifier

This model is a fine-tuned version of google/vit-base-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0415
  • Accuracy: 0.9889
  • F1: 0.9888
  • Precision: 0.9888
  • Recall: 0.9888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 2048
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0696 1.25 50 0.0566 0.9852 0.9851 0.9852 0.9852
0.0673 2.0 51 0.0549 0.9870 0.9870 0.9870 0.9870
0.0599 2.02 52 0.0545 0.9864 0.9863 0.9863 0.9864
0.0639 2.02 53 0.0551 0.9876 0.9875 0.9875 0.9875
0.0694 2.04 54 0.0539 0.9864 0.9863 0.9863 0.9864
0.0655 2.04 55 0.0528 0.9879 0.9878 0.9878 0.9879
0.0629 2.06 56 0.0519 0.9877 0.9876 0.9876 0.9876
0.0761 2.06 57 0.0532 0.9872 0.9871 0.9871 0.9871
0.0741 2.08 58 0.0524 0.9865 0.9864 0.9864 0.9865
0.0585 2.08 59 0.0519 0.9879 0.9878 0.9878 0.9878
0.0534 2.1 60 0.0504 0.9881 0.9880 0.9880 0.9880
0.056 2.1 61 0.0497 0.9876 0.9875 0.9875 0.9875
0.0588 2.12 62 0.0485 0.9878 0.9877 0.9877 0.9877
0.0554 2.12 63 0.0482 0.9872 0.9871 0.9871 0.9872
0.0674 2.13 64 0.0491 0.9870 0.9870 0.9870 0.9869
0.0613 2.15 65 0.0480 0.9877 0.9876 0.9876 0.9876
0.0688 2.15 66 0.0468 0.9877 0.9876 0.9876 0.9876
0.0677 2.17 67 0.0476 0.9874 0.9874 0.9873 0.9874
0.0598 2.17 68 0.0471 0.9874 0.9873 0.9873 0.9873
0.0658 2.19 69 0.0462 0.9877 0.9876 0.9876 0.9876
0.051 2.19 70 0.0467 0.9880 0.9879 0.9879 0.9879
0.0601 2.21 71 0.0456 0.9881 0.9880 0.9880 0.9880
0.0619 2.21 72 0.0460 0.9879 0.9878 0.9878 0.9879
0.0459 2.23 73 0.0458 0.9883 0.9882 0.9882 0.9883
0.0705 2.23 74 0.0447 0.9884 0.9883 0.9883 0.9883
0.0606 2.25 75 0.0447 0.9878 0.9878 0.9878 0.9878
0.0599 3.0 76 0.0441 0.9887 0.9886 0.9887 0.9886
0.0489 3.01 77 0.0438 0.9886 0.9885 0.9885 0.9885
0.0533 3.02 78 0.0442 0.9883 0.9882 0.9882 0.9883
0.0573 3.03 79 0.0438 0.9880 0.9879 0.9879 0.9880
0.0622 3.04 80 0.0439 0.9886 0.9885 0.9885 0.9885
0.0625 3.05 81 0.0434 0.9881 0.9880 0.9880 0.9880
0.0577 3.06 82 0.0431 0.9886 0.9885 0.9885 0.9885
0.0688 3.07 83 0.0435 0.9887 0.9886 0.9886 0.9887
0.0478 3.08 84 0.0434 0.9889 0.9888 0.9888 0.9888
0.0516 3.09 85 0.0436 0.9888 0.9887 0.9887 0.9887
0.0588 3.1 86 0.0426 0.9889 0.9888 0.9888 0.9888
0.0563 3.11 87 0.0422 0.9889 0.9888 0.9888 0.9888
0.0463 3.12 88 0.0422 0.9886 0.9886 0.9885 0.9886
0.0582 3.13 89 0.0421 0.9887 0.9886 0.9886 0.9887
0.0643 3.14 90 0.0419 0.9891 0.9890 0.9890 0.9891
0.0706 3.15 91 0.0417 0.9892 0.9891 0.9891 0.9891
0.0554 3.16 92 0.0417 0.9892 0.9891 0.9891 0.9891
0.0644 3.17 93 0.0416 0.9890 0.9890 0.9890 0.9890
0.0624 3.18 94 0.0415 0.9893 0.9892 0.9892 0.9892
0.0555 3.19 95 0.0416 0.9886 0.9886 0.9885 0.9886
0.0507 3.2 96 0.0415 0.9889 0.9888 0.9888 0.9888
0.0443 3.21 97 0.0415 0.9889 0.9888 0.9888 0.9888
0.0527 3.22 98 0.0415 0.9889 0.9888 0.9888 0.9888
0.0589 3.23 99 0.0415 0.9889 0.9888 0.9888 0.9888
0.0647 3.24 100 0.0415 0.9889 0.9888 0.9888 0.9888

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2