autoencoder / modeling_autoencoder.py
amaye15's picture
Initial commit: AutoEncoder model
ced6e93
raw
history blame
42.1 kB
"""
PyTorch Autoencoder model for Hugging Face Transformers.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, Dict, Any, List
from dataclasses import dataclass
import random
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import ModelOutput
from configuration_autoencoder import AutoencoderConfig
class NeuralScaler(nn.Module):
"""Learnable alternative to StandardScaler using neural networks."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
hidden_dim = config.preprocessing_hidden_dim
# Networks to learn data-dependent statistics
self.mean_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim)
)
self.std_estimator = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim),
nn.Softplus() # Ensure positive standard deviation
)
# Learnable affine transformation parameters
self.weight = nn.Parameter(torch.ones(input_dim))
self.bias = nn.Parameter(torch.zeros(input_dim))
# Running statistics for inference (like BatchNorm)
self.register_buffer('running_mean', torch.zeros(input_dim))
self.register_buffer('running_std', torch.ones(input_dim))
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
# Momentum for running statistics
self.momentum = 0.1
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass through neural scaler.
Args:
x: Input tensor (2D or 3D)
inverse: Whether to apply inverse transformation
Returns:
Tuple of (transformed_tensor, regularization_loss)
"""
if inverse:
return self._inverse_transform(x)
# Handle both 2D and 3D tensors
original_shape = x.shape
if x.dim() == 3:
# Reshape (batch, seq, features) -> (batch*seq, features)
x = x.view(-1, x.size(-1))
if self.training:
# Training mode: learn statistics from current batch
batch_mean = x.mean(dim=0, keepdim=True)
batch_std = x.std(dim=0, keepdim=True)
# Learn data-dependent adjustments
learned_mean_adj = self.mean_estimator(batch_mean)
learned_std_adj = self.std_estimator(batch_std)
# Combine batch statistics with learned adjustments
effective_mean = batch_mean + learned_mean_adj
effective_std = batch_std + learned_std_adj + 1e-8
# Update running statistics
with torch.no_grad():
self.num_batches_tracked += 1
if self.num_batches_tracked == 1:
self.running_mean.copy_(batch_mean.squeeze())
self.running_std.copy_(batch_std.squeeze())
else:
self.running_mean.mul_(1 - self.momentum).add_(batch_mean.squeeze(), alpha=self.momentum)
self.running_std.mul_(1 - self.momentum).add_(batch_std.squeeze(), alpha=self.momentum)
else:
# Inference mode: use running statistics
effective_mean = self.running_mean.unsqueeze(0)
effective_std = self.running_std.unsqueeze(0) + 1e-8
# Normalize
normalized = (x - effective_mean) / effective_std
# Apply learnable affine transformation
transformed = normalized * self.weight + self.bias
# Reshape back to original shape if needed
if len(original_shape) == 3:
transformed = transformed.view(original_shape)
# Regularization loss to encourage meaningful learning
reg_loss = 0.01 * (self.weight.var() + self.bias.var())
return transformed, reg_loss
def _inverse_transform(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply inverse transformation to get back original scale."""
if not self.config.learn_inverse_preprocessing:
return x, torch.tensor(0.0, device=x.device)
# Handle both 2D and 3D tensors
original_shape = x.shape
if x.dim() == 3:
# Reshape (batch, seq, features) -> (batch*seq, features)
x = x.view(-1, x.size(-1))
# Reverse affine transformation
x = (x - self.bias) / (self.weight + 1e-8)
# Reverse normalization using running statistics
effective_mean = self.running_mean.unsqueeze(0)
effective_std = self.running_std.unsqueeze(0) + 1e-8
x = x * effective_std + effective_mean
# Reshape back to original shape if needed
if len(original_shape) == 3:
x = x.view(original_shape)
return x, torch.tensor(0.0, device=x.device)
class CouplingLayer(nn.Module):
"""Coupling layer for normalizing flows."""
def __init__(self, input_dim: int, hidden_dim: int = 64, mask_type: str = "alternating"):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
# Create mask for coupling
if mask_type == "alternating":
self.register_buffer('mask', torch.arange(input_dim) % 2)
elif mask_type == "half":
mask = torch.zeros(input_dim)
mask[:input_dim // 2] = 1
self.register_buffer('mask', mask)
else:
raise ValueError(f"Unknown mask type: {mask_type}")
# Scale and translation networks
masked_dim = int(self.mask.sum().item())
unmasked_dim = input_dim - masked_dim
self.scale_net = nn.Sequential(
nn.Linear(masked_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, unmasked_dim),
nn.Tanh() # Bounded output for stability
)
self.translate_net = nn.Sequential(
nn.Linear(masked_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, unmasked_dim)
)
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass through coupling layer.
Args:
x: Input tensor
inverse: Whether to apply inverse transformation
Returns:
Tuple of (transformed_tensor, log_determinant)
"""
mask = self.mask.bool()
x_masked = x[:, mask]
x_unmasked = x[:, ~mask]
# Compute scale and translation
s = self.scale_net(x_masked)
t = self.translate_net(x_masked)
if not inverse:
# Forward transformation
y_unmasked = x_unmasked * torch.exp(s) + t
log_det = s.sum(dim=1)
else:
# Inverse transformation
y_unmasked = (x_unmasked - t) * torch.exp(-s)
log_det = -s.sum(dim=1)
# Reconstruct output
y = torch.zeros_like(x)
y[:, mask] = x_masked
y[:, ~mask] = y_unmasked
return y, log_det
class NormalizingFlowPreprocessor(nn.Module):
"""Normalizing flow for learnable data preprocessing."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
input_dim = config.input_dim
hidden_dim = config.preprocessing_hidden_dim
num_layers = config.flow_coupling_layers
# Create coupling layers with alternating masks
self.layers = nn.ModuleList()
for i in range(num_layers):
mask_type = "alternating" if i % 2 == 0 else "half"
self.layers.append(CouplingLayer(input_dim, hidden_dim, mask_type))
# Optional: Add batch normalization between layers
if config.use_batch_norm:
self.batch_norms = nn.ModuleList([
nn.BatchNorm1d(input_dim) for _ in range(num_layers - 1)
])
else:
self.batch_norms = None
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass through normalizing flow.
Args:
x: Input tensor (2D or 3D)
inverse: Whether to apply inverse transformation
Returns:
Tuple of (transformed_tensor, total_log_determinant)
"""
# Handle both 2D and 3D tensors
original_shape = x.shape
if x.dim() == 3:
# Reshape (batch, seq, features) -> (batch*seq, features)
x = x.view(-1, x.size(-1))
log_det_total = torch.zeros(x.size(0), device=x.device)
if not inverse:
# Forward pass
for i, layer in enumerate(self.layers):
x, log_det = layer(x, inverse=False)
log_det_total += log_det
# Apply batch normalization (except for last layer)
if self.batch_norms and i < len(self.layers) - 1:
x = self.batch_norms[i](x)
else:
# Inverse pass
for i, layer in enumerate(reversed(self.layers)):
# Reverse batch normalization (except for first layer in reverse)
if self.batch_norms and i > 0:
# Note: This is approximate inverse of batch norm
bn_idx = len(self.layers) - 1 - i
x = self.batch_norms[bn_idx](x)
x, log_det = layer(x, inverse=True)
log_det_total += log_det
# Reshape back to original shape if needed
if len(original_shape) == 3:
x = x.view(original_shape)
# Convert log determinant to regularization loss
# Encourage the flow to preserve information (log_det close to 0)
reg_loss = 0.01 * log_det_total.abs().mean()
return x, reg_loss
class LearnablePreprocessor(nn.Module):
"""Unified interface for learnable preprocessing methods."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
if not config.has_preprocessing:
self.preprocessor = nn.Identity()
elif config.is_neural_scaler:
self.preprocessor = NeuralScaler(config)
elif config.is_normalizing_flow:
self.preprocessor = NormalizingFlowPreprocessor(config)
else:
raise ValueError(f"Unknown preprocessing type: {config.preprocessing_type}")
def forward(self, x: torch.Tensor, inverse: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply preprocessing transformation.
Args:
x: Input tensor
inverse: Whether to apply inverse transformation
Returns:
Tuple of (transformed_tensor, regularization_loss)
"""
if isinstance(self.preprocessor, nn.Identity):
return x, torch.tensor(0.0, device=x.device)
return self.preprocessor(x, inverse=inverse)
@dataclass
class AutoencoderOutput(ModelOutput):
"""
Output type of AutoencoderModel.
Args:
last_hidden_state (torch.FloatTensor): The latent representation of the input.
reconstructed (torch.FloatTensor, optional): The reconstructed input.
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
attentions (tuple(torch.FloatTensor), optional): Not used in basic autoencoder.
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
"""
last_hidden_state: torch.FloatTensor = None
reconstructed: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
preprocessing_loss: Optional[torch.FloatTensor] = None
@dataclass
class AutoencoderForReconstructionOutput(ModelOutput):
"""
Output type of AutoencoderForReconstruction.
Args:
loss (torch.FloatTensor, optional): The reconstruction loss.
reconstructed (torch.FloatTensor): The reconstructed input.
last_hidden_state (torch.FloatTensor): The latent representation.
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
"""
loss: Optional[torch.FloatTensor] = None
reconstructed: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
preprocessing_loss: Optional[torch.FloatTensor] = None
class AutoencoderEncoder(nn.Module):
"""Encoder part of the autoencoder."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Build encoder layers
layers = []
input_dim = config.input_dim
for hidden_dim in config.hidden_dims:
layers.append(nn.Linear(input_dim, hidden_dim))
if config.use_batch_norm:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(self._get_activation(config.activation))
if config.dropout_rate > 0:
layers.append(nn.Dropout(config.dropout_rate))
input_dim = hidden_dim
self.encoder = nn.Sequential(*layers)
# For variational autoencoders, we need separate layers for mean and log variance
if config.is_variational:
self.fc_mu = nn.Linear(input_dim, config.latent_dim)
self.fc_logvar = nn.Linear(input_dim, config.latent_dim)
else:
# Standard encoder output
self.fc_out = nn.Linear(input_dim, config.latent_dim)
def _get_activation(self, activation: str) -> nn.Module:
"""Get activation function by name."""
activations = {
"relu": nn.ReLU(),
"tanh": nn.Tanh(),
"sigmoid": nn.Sigmoid(),
"leaky_relu": nn.LeakyReLU(),
"gelu": nn.GELU(),
"swish": nn.SiLU(),
"silu": nn.SiLU(),
"elu": nn.ELU(),
"prelu": nn.PReLU(),
"relu6": nn.ReLU6(),
"hardtanh": nn.Hardtanh(),
"hardsigmoid": nn.Hardsigmoid(),
"hardswish": nn.Hardswish(),
"mish": nn.Mish(),
"softplus": nn.Softplus(),
"softsign": nn.Softsign(),
"tanhshrink": nn.Tanhshrink(),
"threshold": nn.Threshold(threshold=0.1, value=0),
}
return activations[activation]
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""Forward pass through encoder."""
# Add noise for denoising autoencoders
if self.config.is_denoising and self.training:
noise = torch.randn_like(x) * self.config.noise_factor
x = x + noise
encoded = self.encoder(x)
if self.config.is_variational:
# Variational autoencoder: return mean, log variance, and sampled latent
mu = self.fc_mu(encoded)
logvar = self.fc_logvar(encoded)
# Reparameterization trick
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
else:
z = mu # Use mean during inference
return z, mu, logvar
else:
# Standard autoencoder
latent = self.fc_out(encoded)
# Add sparsity constraint for sparse autoencoders
if self.config.is_sparse and self.training:
# Apply L1 regularization to encourage sparsity
latent = F.relu(latent) # Ensure non-negative activations
return latent
class AutoencoderDecoder(nn.Module):
"""Decoder part of the autoencoder."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Build decoder layers (reverse of encoder)
layers = []
input_dim = config.latent_dim
decoder_dims = config.decoder_dims + [config.input_dim]
for i, hidden_dim in enumerate(decoder_dims):
layers.append(nn.Linear(input_dim, hidden_dim))
# Don't add batch norm, activation, or dropout to the final layer
if i < len(decoder_dims) - 1:
if config.use_batch_norm:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(self._get_activation(config.activation))
if config.dropout_rate > 0:
layers.append(nn.Dropout(config.dropout_rate))
else:
# Final layer - add appropriate activation based on reconstruction loss
if config.reconstruction_loss == "bce":
layers.append(nn.Sigmoid())
input_dim = hidden_dim
self.decoder = nn.Sequential(*layers)
def _get_activation(self, activation: str) -> nn.Module:
"""Get activation function by name."""
activations = {
"relu": nn.ReLU(),
"tanh": nn.Tanh(),
"sigmoid": nn.Sigmoid(),
"leaky_relu": nn.LeakyReLU(),
"gelu": nn.GELU(),
"swish": nn.SiLU(),
"silu": nn.SiLU(),
"elu": nn.ELU(),
"prelu": nn.PReLU(),
"relu6": nn.ReLU6(),
"hardtanh": nn.Hardtanh(),
"hardsigmoid": nn.Hardsigmoid(),
"hardswish": nn.Hardswish(),
"mish": nn.Mish(),
"softplus": nn.Softplus(),
"softsign": nn.Softsign(),
"tanhshrink": nn.Tanhshrink(),
"threshold": nn.Threshold(threshold=0.1, value=0),
}
return activations[activation]
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through decoder."""
return self.decoder(x)
class RecurrentEncoder(nn.Module):
"""Recurrent encoder for sequence data."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Get RNN class
if config.rnn_type == "lstm":
rnn_class = nn.LSTM
elif config.rnn_type == "gru":
rnn_class = nn.GRU
elif config.rnn_type == "rnn":
rnn_class = nn.RNN
else:
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
# Create RNN layers
self.rnn = rnn_class(
input_size=config.input_dim,
hidden_size=config.latent_dim,
num_layers=config.num_layers,
batch_first=True,
dropout=config.dropout_rate if config.num_layers > 1 else 0,
bidirectional=config.bidirectional
)
# Projection layer for bidirectional RNN
if config.bidirectional:
self.projection = nn.Linear(config.latent_dim * 2, config.latent_dim)
else:
self.projection = None
# Batch normalization
if config.use_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
else:
self.batch_norm = None
# Dropout
if config.dropout_rate > 0:
self.dropout = nn.Dropout(config.dropout_rate)
else:
self.dropout = None
def forward(self, x: torch.Tensor, lengths: Optional[torch.Tensor] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""
Forward pass through recurrent encoder.
Args:
x: Input tensor of shape (batch_size, seq_len, input_dim)
lengths: Sequence lengths for packed sequences (optional)
Returns:
Encoded representation or tuple for VAE
"""
batch_size, seq_len, _ = x.shape
# Add noise for denoising autoencoders
if self.config.is_denoising and self.training:
noise = torch.randn_like(x) * self.config.noise_factor
x = x + noise
# Pack sequences if lengths provided
if lengths is not None:
x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
# RNN forward pass
if self.config.rnn_type == "lstm":
output, (hidden, cell) = self.rnn(x)
else:
output, hidden = self.rnn(x)
cell = None
# Unpack if necessary
if lengths is not None:
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
# Use last hidden state as encoding
if self.config.bidirectional:
# Concatenate forward and backward hidden states
hidden = hidden.view(self.config.num_layers, 2, batch_size, self.config.latent_dim)
hidden = hidden[-1] # Take last layer
hidden = hidden.transpose(0, 1).contiguous().view(batch_size, -1) # Concatenate directions
# Project to latent dimension
if self.projection:
hidden = self.projection(hidden)
else:
hidden = hidden[-1] # Take last layer
# Apply batch normalization
if self.batch_norm:
hidden = self.batch_norm(hidden)
# Apply dropout
if self.dropout and self.training:
hidden = self.dropout(hidden)
# Handle variational encoding
if self.config.is_variational:
# Split hidden into mean and log variance
mu = hidden[:, :self.config.latent_dim // 2]
logvar = hidden[:, self.config.latent_dim // 2:]
# Reparameterization trick
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
else:
z = mu
return z, mu, logvar
else:
return hidden
class RecurrentDecoder(nn.Module):
"""Recurrent decoder for sequence data."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Get RNN class
if config.rnn_type == "lstm":
rnn_class = nn.LSTM
elif config.rnn_type == "gru":
rnn_class = nn.GRU
elif config.rnn_type == "rnn":
rnn_class = nn.RNN
else:
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
# Create RNN layers
self.rnn = rnn_class(
input_size=config.latent_dim,
hidden_size=config.latent_dim,
num_layers=config.num_layers,
batch_first=True,
dropout=config.dropout_rate if config.num_layers > 1 else 0,
bidirectional=False # Decoder is always unidirectional
)
# Output projection
self.output_projection = nn.Linear(config.latent_dim, config.input_dim)
# Batch normalization
if config.use_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
else:
self.batch_norm = None
# Dropout
if config.dropout_rate > 0:
self.dropout = nn.Dropout(config.dropout_rate)
else:
self.dropout = None
def forward(self, z: torch.Tensor, target_length: int, target_sequence: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Forward pass through recurrent decoder.
Args:
z: Latent representation of shape (batch_size, latent_dim)
target_length: Length of sequence to generate
target_sequence: Target sequence for teacher forcing (optional)
Returns:
Decoded sequence of shape (batch_size, seq_len, input_dim)
"""
batch_size = z.size(0)
device = z.device
# Initialize hidden state with latent representation
if self.config.rnn_type == "lstm":
h_0 = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
c_0 = torch.zeros_like(h_0)
hidden = (h_0, c_0)
else:
hidden = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
outputs = []
# Initialize input (can be learned or zero)
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
for t in range(target_length):
# Teacher forcing decision
use_teacher_forcing = (target_sequence is not None and
self.training and
random.random() < self.config.teacher_forcing_ratio)
if use_teacher_forcing and t > 0:
# Use previous target as input
current_input = target_sequence[:, t-1:t, :]
# Project to latent dimension if needed
if current_input.size(-1) != self.config.latent_dim:
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
# RNN forward step
if self.config.rnn_type == "lstm":
output, hidden = self.rnn(current_input, hidden)
else:
output, hidden = self.rnn(current_input, hidden)
# Apply batch normalization and dropout
output_flat = output.squeeze(1) # Remove sequence dimension
if self.batch_norm:
output_flat = self.batch_norm(output_flat)
if self.dropout and self.training:
output_flat = self.dropout(output_flat)
# Project to output dimension
step_output = self.output_projection(output_flat)
outputs.append(step_output.unsqueeze(1))
# Use output as next input (for non-teacher forcing)
if not use_teacher_forcing:
# Project output back to latent dimension for next step
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
# Concatenate all outputs
return torch.cat(outputs, dim=1)
class AutoencoderModel(PreTrainedModel):
"""
The bare Autoencoder Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the
PyTorch documentation for all matter related to general usage and behavior.
"""
config_class = AutoencoderConfig
base_model_prefix = "autoencoder"
supports_gradient_checkpointing = False
def __init__(self, config: AutoencoderConfig):
super().__init__(config)
self.config = config
# Initialize learnable preprocessing
if config.has_preprocessing:
self.preprocessor = LearnablePreprocessor(config)
else:
self.preprocessor = None
# Initialize encoder and decoder based on type
if config.is_recurrent:
self.encoder = RecurrentEncoder(config)
self.decoder = RecurrentDecoder(config)
else:
self.encoder = AutoencoderEncoder(config)
self.decoder = AutoencoderDecoder(config)
# Tie weights if specified
if config.tie_weights:
self._tie_weights()
# Initialize weights
self.post_init()
def _tie_weights(self):
"""Tie encoder and decoder weights (transpose relationship)."""
# This is a simplified weight tying - in practice, you might want more sophisticated tying
pass
def get_input_embeddings(self):
"""Get input embeddings (not applicable for basic autoencoder)."""
return None
def set_input_embeddings(self, value):
"""Set input embeddings (not applicable for basic autoencoder)."""
pass
def forward(
self,
input_values: torch.Tensor,
sequence_lengths: Optional[torch.Tensor] = None,
target_length: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], AutoencoderOutput]:
"""
Forward pass through the autoencoder.
Args:
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
- Standard: (batch_size, input_dim)
- Recurrent: (batch_size, seq_len, input_dim)
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
target_length (int, optional): Target sequence length for recurrent decoder.
output_hidden_states (bool, optional): Whether to return hidden states.
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
Returns:
AutoencoderOutput or tuple: The model outputs.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Apply learnable preprocessing
preprocessing_loss = torch.tensor(0.0, device=input_values.device)
if self.preprocessor is not None:
input_values, preprocessing_loss = self.preprocessor(input_values, inverse=False)
# Handle different autoencoder types
if self.config.is_recurrent:
# Recurrent autoencoder
if sequence_lengths is not None:
encoder_output = self.encoder(input_values, sequence_lengths)
else:
encoder_output = self.encoder(input_values)
if self.config.is_variational:
latent, mu, logvar = encoder_output
self._mu = mu
self._logvar = logvar
else:
latent = encoder_output
self._mu = None
self._logvar = None
# Determine target length for decoder
if target_length is None:
if self.config.sequence_length is not None:
target_length = self.config.sequence_length
else:
target_length = input_values.size(1) # Use input sequence length
# Decode latent back to sequence space
reconstructed = self.decoder(latent, target_length, input_values if self.training else None)
else:
# Standard autoencoder
encoder_output = self.encoder(input_values)
if self.config.is_variational:
latent, mu, logvar = encoder_output
self._mu = mu
self._logvar = logvar
else:
latent = encoder_output
self._mu = None
self._logvar = None
# Decode latent back to input space
reconstructed = self.decoder(latent)
# Apply inverse preprocessing to reconstruction
if self.preprocessor is not None and self.config.learn_inverse_preprocessing:
reconstructed, inverse_loss = self.preprocessor(reconstructed, inverse=True)
preprocessing_loss += inverse_loss
hidden_states = None
if output_hidden_states:
if self.config.is_variational:
hidden_states = (latent, mu, logvar)
else:
hidden_states = (latent,)
if not return_dict:
return tuple(v for v in [latent, reconstructed, hidden_states] if v is not None)
return AutoencoderOutput(
last_hidden_state=latent,
reconstructed=reconstructed,
hidden_states=hidden_states,
preprocessing_loss=preprocessing_loss,
)
class AutoencoderForReconstruction(PreTrainedModel):
"""
Autoencoder Model with a reconstruction head on top for reconstruction tasks.
This model inherits from PreTrainedModel and adds a reconstruction loss calculation.
"""
config_class = AutoencoderConfig
base_model_prefix = "autoencoder"
def __init__(self, config: AutoencoderConfig):
super().__init__(config)
self.config = config
# Initialize the base autoencoder model
self.autoencoder = AutoencoderModel(config)
# Initialize weights
self.post_init()
def get_input_embeddings(self):
"""Get input embeddings."""
return self.autoencoder.get_input_embeddings()
def set_input_embeddings(self, value):
"""Set input embeddings."""
self.autoencoder.set_input_embeddings(value)
def _compute_reconstruction_loss(
self,
reconstructed: torch.Tensor,
target: torch.Tensor
) -> torch.Tensor:
"""Compute reconstruction loss based on the configured loss type."""
if self.config.reconstruction_loss == "mse":
return F.mse_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "bce":
return F.binary_cross_entropy_with_logits(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "l1":
return F.l1_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "huber":
return F.huber_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "smooth_l1":
return F.smooth_l1_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "kl_div":
return F.kl_div(F.log_softmax(reconstructed, dim=-1), F.softmax(target, dim=-1), reduction="mean")
elif self.config.reconstruction_loss == "cosine":
return 1 - F.cosine_similarity(reconstructed, target, dim=-1).mean()
elif self.config.reconstruction_loss == "focal":
return self._focal_loss(reconstructed, target)
elif self.config.reconstruction_loss == "dice":
return self._dice_loss(reconstructed, target)
elif self.config.reconstruction_loss == "tversky":
return self._tversky_loss(reconstructed, target)
elif self.config.reconstruction_loss == "ssim":
return self._ssim_loss(reconstructed, target)
elif self.config.reconstruction_loss == "perceptual":
return self._perceptual_loss(reconstructed, target)
else:
raise ValueError(f"Unknown reconstruction loss: {self.config.reconstruction_loss}")
def _focal_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 1.0, gamma: float = 2.0) -> torch.Tensor:
"""Compute focal loss for handling class imbalance."""
ce_loss = F.mse_loss(pred, target, reduction="none")
pt = torch.exp(-ce_loss)
focal_loss = alpha * (1 - pt) ** gamma * ce_loss
return focal_loss.mean()
def _dice_loss(self, pred: torch.Tensor, target: torch.Tensor, smooth: float = 1e-6) -> torch.Tensor:
"""Compute Dice loss for segmentation-like tasks."""
pred_flat = pred.view(-1)
target_flat = target.view(-1)
intersection = (pred_flat * target_flat).sum()
dice = (2.0 * intersection + smooth) / (pred_flat.sum() + target_flat.sum() + smooth)
return 1 - dice
def _tversky_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 0.7, beta: float = 0.3, smooth: float = 1e-6) -> torch.Tensor:
"""Compute Tversky loss, a generalization of Dice loss."""
pred_flat = pred.view(-1)
target_flat = target.view(-1)
true_pos = (pred_flat * target_flat).sum()
false_neg = (target_flat * (1 - pred_flat)).sum()
false_pos = ((1 - target_flat) * pred_flat).sum()
tversky = (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
return 1 - tversky
def _ssim_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute SSIM-based loss (simplified version)."""
# Simplified SSIM for 1D data
mu1 = pred.mean(dim=-1, keepdim=True)
mu2 = target.mean(dim=-1, keepdim=True)
sigma1_sq = ((pred - mu1) ** 2).mean(dim=-1, keepdim=True)
sigma2_sq = ((target - mu2) ** 2).mean(dim=-1, keepdim=True)
sigma12 = ((pred - mu1) * (target - mu2)).mean(dim=-1, keepdim=True)
c1, c2 = 0.01, 0.03
ssim = ((2 * mu1 * mu2 + c1) * (2 * sigma12 + c2)) / ((mu1**2 + mu2**2 + c1) * (sigma1_sq + sigma2_sq + c2))
return 1 - ssim.mean()
def _perceptual_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute perceptual loss (simplified version using feature differences)."""
# For simplicity, use L2 loss on normalized features
pred_norm = F.normalize(pred, p=2, dim=-1)
target_norm = F.normalize(target, p=2, dim=-1)
return F.mse_loss(pred_norm, target_norm)
def forward(
self,
input_values: torch.Tensor,
labels: Optional[torch.Tensor] = None,
sequence_lengths: Optional[torch.Tensor] = None,
target_length: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], AutoencoderForReconstructionOutput]:
"""
Forward pass with reconstruction loss calculation.
Args:
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
- Standard: (batch_size, input_dim)
- Recurrent: (batch_size, seq_len, input_dim)
labels (torch.Tensor, optional): Target tensor for reconstruction. If None, uses input_values.
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
target_length (int, optional): Target sequence length for recurrent decoder.
output_hidden_states (bool, optional): Whether to return hidden states.
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
Returns:
AutoencoderForReconstructionOutput or tuple: The model outputs including loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# If no labels provided, use input as target (standard autoencoder)
if labels is None:
labels = input_values
# Forward pass through autoencoder
outputs = self.autoencoder(
input_values=input_values,
sequence_lengths=sequence_lengths,
target_length=target_length,
output_hidden_states=output_hidden_states,
return_dict=True,
)
reconstructed = outputs.reconstructed
latent = outputs.last_hidden_state
hidden_states = outputs.hidden_states
# Compute reconstruction loss
recon_loss = self._compute_reconstruction_loss(reconstructed, labels)
# Add regularization losses based on autoencoder type
total_loss = recon_loss
# Add preprocessing loss if available
if hasattr(outputs, 'preprocessing_loss') and outputs.preprocessing_loss is not None:
total_loss += outputs.preprocessing_loss
if self.config.is_variational and hasattr(self.autoencoder, '_mu') and self.autoencoder._mu is not None:
# KL divergence loss for variational autoencoders
kl_loss = -0.5 * torch.sum(1 + self.autoencoder._logvar - self.autoencoder._mu.pow(2) - self.autoencoder._logvar.exp())
kl_loss = kl_loss / (self.autoencoder._mu.size(0) * self.autoencoder._mu.size(1)) # Normalize by batch size and latent dim
total_loss = recon_loss + self.config.beta * kl_loss
elif self.config.is_sparse:
# Sparsity loss for sparse autoencoders
latent = outputs.last_hidden_state
sparsity_loss = torch.mean(torch.abs(latent)) # L1 sparsity
total_loss = recon_loss + 0.1 * sparsity_loss # Sparsity weight
elif self.config.is_contractive:
# Contractive loss - penalize large gradients of hidden representation w.r.t. input
latent = outputs.last_hidden_state
latent.retain_grad()
if latent.grad is not None:
contractive_loss = torch.sum(latent.grad ** 2)
total_loss = recon_loss + 0.1 * contractive_loss
loss = total_loss
if not return_dict:
output = (reconstructed, latent)
if hidden_states is not None:
output = output + (hidden_states,)
return ((loss,) + output) if loss is not None else output
return AutoencoderForReconstructionOutput(
loss=loss,
reconstructed=reconstructed,
last_hidden_state=latent,
hidden_states=hidden_states,
preprocessing_loss=outputs.preprocessing_loss if hasattr(outputs, 'preprocessing_loss') else None,
)