autoencoder / modeling_autoencoder.py
AndrewMayesPrezzee
Feat - Fixed Circular Imports
0fa67db
"""
PyTorch Autoencoder model for Hugging Face Transformers.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, Dict, Any, List
from dataclasses import dataclass
import random
import re
# Import PreTrainedModel in a way that avoids circular imports in some environments (e.g., Databricks)
try:
from transformers.modeling_utils import PreTrainedModel
except Exception:
# Fallback if direct path is unavailable
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import ModelOutput
try:
from .configuration_autoencoder import AutoencoderConfig # when loaded via HF dynamic module
except Exception:
from configuration_autoencoder import AutoencoderConfig # local usage
# Block-based architecture components
try:
from .blocks import (
BlockFactory,
BlockSequence,
LinearBlockConfig,
AttentionBlockConfig,
RecurrentBlockConfig,
ConvolutionalBlockConfig,
VariationalBlockConfig,
VariationalBlock,
) # when in package
except Exception:
from blocks import (
BlockFactory,
BlockSequence,
LinearBlockConfig,
AttentionBlockConfig,
RecurrentBlockConfig,
ConvolutionalBlockConfig,
VariationalBlockConfig,
VariationalBlock,
) # local usage
# Shared utilities
try:
from .utils import _get_activation
except Exception:
from utils import _get_activation
# Preprocessing components
try:
from .preprocessing import PreprocessingBlock # when in package
except Exception:
from preprocessing import PreprocessingBlock # local usage
@dataclass
class AutoencoderOutput(ModelOutput):
"""
Output type of AutoencoderModel.
Args:
last_hidden_state (torch.FloatTensor): The latent representation of the input.
reconstructed (torch.FloatTensor, optional): The reconstructed input.
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
attentions (tuple(torch.FloatTensor), optional): Not used in basic autoencoder.
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
"""
last_hidden_state: torch.FloatTensor = None
reconstructed: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
preprocessing_loss: Optional[torch.FloatTensor] = None
@dataclass
class AutoencoderForReconstructionOutput(ModelOutput):
"""
Output type of AutoencoderForReconstruction.
Args:
loss (torch.FloatTensor, optional): The reconstruction loss.
reconstructed (torch.FloatTensor): The reconstructed input.
last_hidden_state (torch.FloatTensor): The latent representation.
hidden_states (tuple(torch.FloatTensor), optional): Hidden states of the encoder layers.
preprocessing_loss (torch.FloatTensor, optional): Loss from learnable preprocessing.
"""
loss: Optional[torch.FloatTensor] = None
reconstructed: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
preprocessing_loss: Optional[torch.FloatTensor] = None
class AutoencoderEncoder(nn.Module):
"""Encoder part of the autoencoder."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Build encoder layers
layers = []
input_dim = config.input_dim
for hidden_dim in config.hidden_dims:
layers.append(nn.Linear(input_dim, hidden_dim))
if config.use_batch_norm:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(self._get_activation(config.activation))
if config.dropout_rate > 0:
layers.append(nn.Dropout(config.dropout_rate))
input_dim = hidden_dim
self.encoder = nn.Sequential(*layers)
# For variational autoencoders, we need separate layers for mean and log variance
if config.is_variational:
self.fc_mu = nn.Linear(input_dim, config.latent_dim)
self.fc_logvar = nn.Linear(input_dim, config.latent_dim)
else:
# Standard encoder output
self.fc_out = nn.Linear(input_dim, config.latent_dim)
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""Forward pass through encoder."""
# Add noise for denoising autoencoders
if self.config.is_denoising and self.training:
noise = torch.randn_like(x) * self.config.noise_factor
x = x + noise
encoded = self.encoder(x)
if self.config.is_variational:
# Variational autoencoder: return mean, log variance, and sampled latent
mu = self.fc_mu(encoded)
logvar = self.fc_logvar(encoded)
# Reparameterization trick
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
else:
z = mu # Use mean during inference
return z, mu, logvar
else:
# Standard autoencoder
latent = self.fc_out(encoded)
# Add sparsity constraint for sparse autoencoders
if self.config.is_sparse and self.training:
# Apply L1 regularization to encourage sparsity
latent = F.relu(latent) # Ensure non-negative activations
return latent
class AutoencoderDecoder(nn.Module):
"""Decoder part of the autoencoder."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Build decoder layers (reverse of encoder)
layers = []
input_dim = config.latent_dim
decoder_dims = config.decoder_dims + [config.input_dim]
for i, hidden_dim in enumerate(decoder_dims):
layers.append(nn.Linear(input_dim, hidden_dim))
# Don't add batch norm, activation, or dropout to the final layer
if i < len(decoder_dims) - 1:
if config.use_batch_norm:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(_get_activation(config.activation))
if config.dropout_rate > 0:
layers.append(nn.Dropout(config.dropout_rate))
else:
# Final layer - add appropriate activation based on reconstruction loss
if config.reconstruction_loss == "bce":
layers.append(nn.Sigmoid())
input_dim = hidden_dim
self.decoder = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through decoder."""
return self.decoder(x)
class RecurrentEncoder(nn.Module):
"""Recurrent encoder for sequence data."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Get RNN class
if config.rnn_type == "lstm":
rnn_class = nn.LSTM
elif config.rnn_type == "gru":
rnn_class = nn.GRU
elif config.rnn_type == "rnn":
rnn_class = nn.RNN
else:
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
# Create RNN layers
self.rnn = rnn_class(
input_size=config.input_dim,
hidden_size=config.latent_dim,
num_layers=config.num_layers,
batch_first=True,
dropout=config.dropout_rate if config.num_layers > 1 else 0,
bidirectional=config.bidirectional
)
# Projection layer for bidirectional RNN
if config.bidirectional:
self.projection = nn.Linear(config.latent_dim * 2, config.latent_dim)
else:
self.projection = None
# Batch normalization
if config.use_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
else:
self.batch_norm = None
# Dropout
if config.dropout_rate > 0:
self.dropout = nn.Dropout(config.dropout_rate)
else:
self.dropout = None
def forward(self, x: torch.Tensor, lengths: Optional[torch.Tensor] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""
Forward pass through recurrent encoder.
Args:
x: Input tensor of shape (batch_size, seq_len, input_dim)
lengths: Sequence lengths for packed sequences (optional)
Returns:
Encoded representation or tuple for VAE
"""
batch_size, seq_len, _ = x.shape
# Add noise for denoising autoencoders
if self.config.is_denoising and self.training:
noise = torch.randn_like(x) * self.config.noise_factor
x = x + noise
# Pack sequences if lengths provided
if lengths is not None:
x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
# RNN forward pass
if self.config.rnn_type == "lstm":
output, (hidden, cell) = self.rnn(x)
else:
output, hidden = self.rnn(x)
cell = None
# Unpack if necessary
if lengths is not None:
output, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
# Use last hidden state as encoding
if self.config.bidirectional:
# Concatenate forward and backward hidden states
hidden = hidden.view(self.config.num_layers, 2, batch_size, self.config.latent_dim)
hidden = hidden[-1] # Take last layer
hidden = hidden.transpose(0, 1).contiguous().view(batch_size, -1) # Concatenate directions
# Project to latent dimension
if self.projection:
hidden = self.projection(hidden)
else:
hidden = hidden[-1] # Take last layer
# Apply batch normalization
if self.batch_norm:
hidden = self.batch_norm(hidden)
# Apply dropout
if self.dropout and self.training:
hidden = self.dropout(hidden)
# Handle variational encoding
if self.config.is_variational:
# Split hidden into mean and log variance
mu = hidden[:, :self.config.latent_dim // 2]
logvar = hidden[:, self.config.latent_dim // 2:]
# Reparameterization trick
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
else:
z = mu
return z, mu, logvar
else:
return hidden
class RecurrentDecoder(nn.Module):
"""Recurrent decoder for sequence data."""
def __init__(self, config: AutoencoderConfig):
super().__init__()
self.config = config
# Get RNN class
if config.rnn_type == "lstm":
rnn_class = nn.LSTM
elif config.rnn_type == "gru":
rnn_class = nn.GRU
elif config.rnn_type == "rnn":
rnn_class = nn.RNN
else:
raise ValueError(f"Unknown RNN type: {config.rnn_type}")
# Create RNN layers
self.rnn = rnn_class(
input_size=config.latent_dim,
hidden_size=config.latent_dim,
num_layers=config.num_layers,
batch_first=True,
dropout=config.dropout_rate if config.num_layers > 1 else 0,
bidirectional=False # Decoder is always unidirectional
)
# Output projection
self.output_projection = nn.Linear(config.latent_dim, config.input_dim)
# Batch normalization
if config.use_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.latent_dim)
else:
self.batch_norm = None
# Dropout
if config.dropout_rate > 0:
self.dropout = nn.Dropout(config.dropout_rate)
else:
self.dropout = None
def forward(self, z: torch.Tensor, target_length: int, target_sequence: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Forward pass through recurrent decoder.
Args:
z: Latent representation of shape (batch_size, latent_dim)
target_length: Length of sequence to generate
target_sequence: Target sequence for teacher forcing (optional)
Returns:
Decoded sequence of shape (batch_size, seq_len, input_dim)
"""
batch_size = z.size(0)
device = z.device
# Initialize hidden state with latent representation
if self.config.rnn_type == "lstm":
h_0 = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
c_0 = torch.zeros_like(h_0)
hidden = (h_0, c_0)
else:
hidden = z.unsqueeze(0).repeat(self.config.num_layers, 1, 1)
outputs = []
# Initialize input (can be learned or zero)
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
for t in range(target_length):
# Teacher forcing decision
use_teacher_forcing = (target_sequence is not None and
self.training and
random.random() < self.config.teacher_forcing_ratio)
if use_teacher_forcing and t > 0:
# Use previous target as input
current_input = target_sequence[:, t-1:t, :]
# Project to latent dimension if needed
if current_input.size(-1) != self.config.latent_dim:
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
# RNN forward step
if self.config.rnn_type == "lstm":
output, hidden = self.rnn(current_input, hidden)
else:
output, hidden = self.rnn(current_input, hidden)
# Apply batch normalization and dropout
output_flat = output.squeeze(1) # Remove sequence dimension
if self.batch_norm:
output_flat = self.batch_norm(output_flat)
if self.dropout and self.training:
output_flat = self.dropout(output_flat)
# Project to output dimension
step_output = self.output_projection(output_flat)
outputs.append(step_output.unsqueeze(1))
# Use output as next input (for non-teacher forcing)
if not use_teacher_forcing:
# Project output back to latent dimension for next step
current_input = torch.zeros(batch_size, 1, self.config.latent_dim, device=device)
# Concatenate all outputs
return torch.cat(outputs, dim=1)
class AutoencoderModel(PreTrainedModel):
"""
The bare Autoencoder Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the
PyTorch documentation for all matter related to general usage and behavior.
"""
config_class = AutoencoderConfig
base_model_prefix = "autoencoder"
supports_gradient_checkpointing = False
def __init__(self, config: AutoencoderConfig):
super().__init__(config)
self.config = config
# Initialize learnable preprocessing as a single forward block only
if config.has_preprocessing:
self.pre_block = PreprocessingBlock(config, inverse=False)
else:
self.pre_block = None
# Build block-based encoder/decoder sequences (breaking change refactor)
norm = "batch" if config.use_batch_norm else "none"
def default_linear_sequence(in_dim: int, dims: List[int], activation: str, normalization: str, dropout: float) -> List[LinearBlockConfig]:
cfgs: List[LinearBlockConfig] = []
prev = in_dim
for h in dims:
cfgs.append(
LinearBlockConfig(
input_dim=prev,
output_dim=h,
activation=activation,
normalization=normalization,
dropout_rate=dropout,
use_residual=False,
)
)
prev = h
return cfgs
# Encoder: use explicit block list if provided, else hidden_dims default
if getattr(config, "encoder_blocks", None):
enc_cfgs = config.encoder_blocks
# Compute enc_out_dim from last block's output_dim if linear/conv, else assume input_dim
last_out = None
for b in enc_cfgs:
if isinstance(b, dict):
last_out = b.get("output_dim", last_out)
else:
last_out = getattr(b, "output_dim", last_out)
enc_out_dim = last_out or (config.hidden_dims[-1] if config.hidden_dims else config.input_dim)
else:
enc_cfgs = default_linear_sequence(config.input_dim, config.hidden_dims, config.activation, norm, config.dropout_rate)
enc_out_dim = config.hidden_dims[-1] if config.hidden_dims else config.input_dim
base_encoder_seq: BlockSequence = BlockFactory.build_sequence(enc_cfgs) if len(enc_cfgs) > 0 else BlockSequence([])
# Do not inject pre_block into encoder sequence; apply it explicitly in forward
self.encoder_seq = base_encoder_seq
# Project to latent
if config.is_variational:
self.fc_mu = nn.Linear(enc_out_dim, config.latent_dim)
self.fc_logvar = nn.Linear(enc_out_dim, config.latent_dim)
self.to_latent = None
else:
self.fc_mu = None
self.fc_logvar = None
self.to_latent = nn.Linear(enc_out_dim, config.latent_dim)
# Decoder: use explicit block list if provided, else default MLP back to input
if getattr(config, "decoder_blocks", None):
dec_cfgs = config.decoder_blocks
else:
dec_dims = config.decoder_dims + [config.input_dim]
dec_cfgs = default_linear_sequence(config.latent_dim, dec_dims, config.activation, norm, config.dropout_rate)
# For final projection to input_dim: identity activation and no norm/dropout
if len(dec_cfgs) > 0:
last = dec_cfgs[-1]
last.activation = "identity"
last.normalization = "none"
last.dropout_rate = 0.0
self.decoder_seq: BlockSequence = BlockFactory.build_sequence(dec_cfgs) if len(dec_cfgs) > 0 else BlockSequence([])
# Tie weights if specified (no-op for now)
if config.tie_weights:
self._tie_weights()
# Initialize weights
self.post_init()
def _tie_weights(self):
"""Tie encoder and decoder weights (transpose relationship)."""
# This is a simplified weight tying - in practice, you might want more sophisticated tying
pass
def get_input_embeddings(self):
"""Get input embeddings (not applicable for basic autoencoder)."""
return None
def set_input_embeddings(self, value):
"""Set input embeddings (not applicable for basic autoencoder)."""
pass
def forward(
self,
input_values: torch.Tensor,
sequence_lengths: Optional[torch.Tensor] = None,
target_length: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], AutoencoderOutput]:
"""
Forward pass through the autoencoder.
Args:
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
- Standard: (batch_size, input_dim)
- Recurrent: (batch_size, seq_len, input_dim)
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
target_length (int, optional): Target sequence length for recurrent decoder.
output_hidden_states (bool, optional): Whether to return hidden states.
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
Returns:
AutoencoderOutput or tuple: The model outputs.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Apply learnable preprocessing via block (forward only)
if self.pre_block is not None:
input_values = self.pre_block(input_values)
preprocessing_loss = torch.tensor(0.0, device=input_values.device)
# Block-based forward
# Encode through block sequence
enc_out = self.encoder_seq(input_values)
# Sample or project to latent
if self.config.is_variational:
# Use VariationalBlock to encapsulate VAE behavior
self._variational = getattr(self, '_variational', None)
if self._variational is None:
self._variational = VariationalBlock(VariationalBlockConfig(input_dim=enc_out.shape[-1], latent_dim=self.config.latent_dim)).to(enc_out.device)
latent = self._variational(enc_out, training=self.training)
self._mu = self._variational._mu
self._logvar = self._variational._logvar
else:
latent = self.to_latent(enc_out) if self.to_latent is not None else enc_out
self._mu, self._logvar = None, None
# Decode back to input space
reconstructed = self.decoder_seq(latent)
hidden_states = None
if output_hidden_states:
if self.config.is_variational:
hidden_states = (latent, getattr(self, '_mu', None), getattr(self, '_logvar', None))
else:
hidden_states = (latent,)
if not return_dict:
return tuple(v for v in [latent, reconstructed, hidden_states] if v is not None)
return AutoencoderOutput(
last_hidden_state=latent,
reconstructed=reconstructed,
hidden_states=hidden_states,
preprocessing_loss=preprocessing_loss,
)
class AutoencoderForReconstruction(PreTrainedModel):
"""
Autoencoder Model with a reconstruction head on top for reconstruction tasks.
This model inherits from PreTrainedModel and adds a reconstruction loss calculation.
"""
config_class = AutoencoderConfig
base_model_prefix = "autoencoder"
def __init__(self, config: AutoencoderConfig):
super().__init__(config)
self.config = config
# Initialize the base autoencoder model
self.autoencoder = AutoencoderModel(config)
# Initialize weights
self.post_init()
def get_input_embeddings(self):
"""Get input embeddings."""
return self.autoencoder.get_input_embeddings()
def set_input_embeddings(self, value):
"""Set input embeddings."""
self.autoencoder.set_input_embeddings(value)
def _compute_reconstruction_loss(
self,
reconstructed: torch.Tensor,
target: torch.Tensor
) -> torch.Tensor:
"""Compute reconstruction loss based on the configured loss type."""
if self.config.reconstruction_loss == "mse":
return F.mse_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "bce":
return F.binary_cross_entropy_with_logits(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "l1":
return F.l1_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "huber":
return F.huber_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "smooth_l1":
return F.smooth_l1_loss(reconstructed, target, reduction="mean")
elif self.config.reconstruction_loss == "kl_div":
return F.kl_div(F.log_softmax(reconstructed, dim=-1), F.softmax(target, dim=-1), reduction="mean")
elif self.config.reconstruction_loss == "cosine":
return 1 - F.cosine_similarity(reconstructed, target, dim=-1).mean()
elif self.config.reconstruction_loss == "focal":
return self._focal_loss(reconstructed, target)
elif self.config.reconstruction_loss == "dice":
return self._dice_loss(reconstructed, target)
elif self.config.reconstruction_loss == "tversky":
return self._tversky_loss(reconstructed, target)
elif self.config.reconstruction_loss == "ssim":
return self._ssim_loss(reconstructed, target)
elif self.config.reconstruction_loss == "perceptual":
return self._perceptual_loss(reconstructed, target)
else:
raise ValueError(f"Unknown reconstruction loss: {self.config.reconstruction_loss}")
def _focal_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 1.0, gamma: float = 2.0) -> torch.Tensor:
"""Compute focal loss for handling class imbalance."""
ce_loss = F.mse_loss(pred, target, reduction="none")
pt = torch.exp(-ce_loss)
focal_loss = alpha * (1 - pt) ** gamma * ce_loss
return focal_loss.mean()
def _dice_loss(self, pred: torch.Tensor, target: torch.Tensor, smooth: float = 1e-6) -> torch.Tensor:
"""Compute Dice loss for segmentation-like tasks."""
pred_flat = pred.view(-1)
target_flat = target.view(-1)
intersection = (pred_flat * target_flat).sum()
dice = (2.0 * intersection + smooth) / (pred_flat.sum() + target_flat.sum() + smooth)
return 1 - dice
def _tversky_loss(self, pred: torch.Tensor, target: torch.Tensor, alpha: float = 0.7, beta: float = 0.3, smooth: float = 1e-6) -> torch.Tensor:
"""Compute Tversky loss, a generalization of Dice loss."""
pred_flat = pred.view(-1)
target_flat = target.view(-1)
true_pos = (pred_flat * target_flat).sum()
false_neg = (target_flat * (1 - pred_flat)).sum()
false_pos = ((1 - target_flat) * pred_flat).sum()
tversky = (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
return 1 - tversky
def _ssim_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute SSIM-based loss (simplified version)."""
# Simplified SSIM for 1D data
mu1 = pred.mean(dim=-1, keepdim=True)
mu2 = target.mean(dim=-1, keepdim=True)
sigma1_sq = ((pred - mu1) ** 2).mean(dim=-1, keepdim=True)
sigma2_sq = ((target - mu2) ** 2).mean(dim=-1, keepdim=True)
sigma12 = ((pred - mu1) * (target - mu2)).mean(dim=-1, keepdim=True)
c1, c2 = 0.01, 0.03
ssim = ((2 * mu1 * mu2 + c1) * (2 * sigma12 + c2)) / ((mu1**2 + mu2**2 + c1) * (sigma1_sq + sigma2_sq + c2))
return 1 - ssim.mean()
def _perceptual_loss(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute perceptual loss (simplified version using feature differences)."""
# For simplicity, use L2 loss on normalized features
pred_norm = F.normalize(pred, p=2, dim=-1)
target_norm = F.normalize(target, p=2, dim=-1)
return F.mse_loss(pred_norm, target_norm)
def forward(
self,
input_values: torch.Tensor,
labels: Optional[torch.Tensor] = None,
sequence_lengths: Optional[torch.Tensor] = None,
target_length: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], AutoencoderForReconstructionOutput]:
"""
Forward pass with reconstruction loss calculation.
Args:
input_values (torch.Tensor): Input tensor. Shape depends on autoencoder type:
- Standard: (batch_size, input_dim)
- Recurrent: (batch_size, seq_len, input_dim)
labels (torch.Tensor, optional): Target tensor for reconstruction. If None, uses input_values.
sequence_lengths (torch.Tensor, optional): Sequence lengths for recurrent AE.
target_length (int, optional): Target sequence length for recurrent decoder.
output_hidden_states (bool, optional): Whether to return hidden states.
return_dict (bool, optional): Whether to return a ModelOutput instead of a plain tuple.
Returns:
AutoencoderForReconstructionOutput or tuple: The model outputs including loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# If no labels provided, use input as target (standard autoencoder)
if labels is None:
labels = input_values
# Forward pass through autoencoder
outputs = self.autoencoder(
input_values=input_values,
sequence_lengths=sequence_lengths,
target_length=target_length,
output_hidden_states=output_hidden_states,
return_dict=True,
)
reconstructed = outputs.reconstructed
latent = outputs.last_hidden_state
hidden_states = outputs.hidden_states
# Compute reconstruction loss
recon_loss = self._compute_reconstruction_loss(reconstructed, labels)
# Add regularization losses based on autoencoder type
total_loss = recon_loss
# Add preprocessing loss if available
if hasattr(outputs, 'preprocessing_loss') and outputs.preprocessing_loss is not None:
total_loss += outputs.preprocessing_loss
if self.config.is_variational and hasattr(self.autoencoder, '_mu') and self.autoencoder._mu is not None:
# KL divergence loss for variational autoencoders
kl_loss = -0.5 * torch.sum(1 + self.autoencoder._logvar - self.autoencoder._mu.pow(2) - self.autoencoder._logvar.exp())
kl_loss = kl_loss / (self.autoencoder._mu.size(0) * self.autoencoder._mu.size(1)) # Normalize by batch size and latent dim
total_loss = recon_loss + self.config.beta * kl_loss
elif self.config.is_sparse:
# Sparsity loss for sparse autoencoders
latent = outputs.last_hidden_state
sparsity_loss = torch.mean(torch.abs(latent)) # L1 sparsity
total_loss = recon_loss + 0.1 * sparsity_loss # Sparsity weight
elif self.config.is_contractive:
# Contractive loss - penalize large gradients of hidden representation w.r.t. input
latent = outputs.last_hidden_state
latent.retain_grad()
if latent.grad is not None:
contractive_loss = torch.sum(latent.grad ** 2)
total_loss = recon_loss + 0.1 * contractive_loss
loss = total_loss
if not return_dict:
output = (reconstructed, latent)
if hidden_states is not None:
output = output + (hidden_states,)
return ((loss,) + output) if loss is not None else output
return AutoencoderForReconstructionOutput(
loss=loss,
reconstructed=reconstructed,
last_hidden_state=latent,
hidden_states=hidden_states,
preprocessing_loss=outputs.preprocessing_loss if hasattr(outputs, 'preprocessing_loss') else None,
)