test
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8066
- Accuracy: 0.8412
- F1: 0.8864
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.5381 | 1.0 | 58 | 0.4061 | 0.8214 | 0.8669 |
0.3253 | 2.0 | 116 | 0.3933 | 0.8209 | 0.8625 |
0.1943 | 3.0 | 174 | 0.4147 | 0.8307 | 0.8734 |
0.099 | 4.0 | 232 | 0.7017 | 0.8180 | 0.8739 |
0.0578 | 5.0 | 290 | 0.7371 | 0.8348 | 0.8799 |
0.0305 | 6.0 | 348 | 0.7759 | 0.8429 | 0.8879 |
0.0187 | 7.0 | 406 | 0.8006 | 0.8394 | 0.8851 |
0.0161 | 8.0 | 464 | 0.8066 | 0.8412 | 0.8864 |
Framework versions
- Transformers 4.54.0
- Pytorch 2.7.1+cu118
- Datasets 3.0.2
- Tokenizers 0.21.2
- Downloads last month
- 5
Model tree for aneesarom/test
Base model
google-bert/bert-base-uncased