bert-finetuned-ner-best
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1654
- Precision: 0.9203
- Recall: 0.9265
- F1: 0.9233
- Accuracy: 0.9810
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.230086668763943e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0043 | 1.0 | 2500 | 0.1521 | 0.8973 | 0.9165 | 0.9068 | 0.9782 |
| 0.0022 | 2.0 | 5000 | 0.1567 | 0.9048 | 0.9214 | 0.9130 | 0.9787 |
| 0.0048 | 3.0 | 7500 | 0.1456 | 0.8959 | 0.9192 | 0.9074 | 0.9781 |
| 0.0024 | 4.0 | 10000 | 0.1641 | 0.9118 | 0.9204 | 0.9161 | 0.9791 |
| 0.0043 | 5.0 | 12500 | 0.1791 | 0.9002 | 0.9216 | 0.9108 | 0.9787 |
| 0.0005 | 6.0 | 15000 | 0.1719 | 0.9086 | 0.9201 | 0.9143 | 0.9783 |
| 0.0049 | 7.0 | 17500 | 0.1582 | 0.9175 | 0.9169 | 0.9172 | 0.9799 |
| 0.0001 | 8.0 | 20000 | 0.1625 | 0.9143 | 0.9246 | 0.9194 | 0.9807 |
| 0.0039 | 9.0 | 22500 | 0.1516 | 0.9186 | 0.9265 | 0.9225 | 0.9813 |
| 0.0 | 10.0 | 25000 | 0.1654 | 0.9203 | 0.9265 | 0.9233 | 0.9810 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 14
Model tree for arimmean/bert-finetuned-ner-best
Base model
BAAI/bge-small-en-v1.5