Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("as-bessonov/reranker_searchengines_cos")
# Run inference
sentences = [
'are clear glass frames in style?',
'My LG range has a blue oven interior that is “porcelain enamel” sometimes called “vitreous enamel.” Vitreous means made from glass (From the Latin vitrus or glass.) ... It is glass coated steel applied at an extremely high temperature (high enough to melt glass I presume.)',
'On iPhone X and later, you can see the battery percentage in Control Center. Just swipe down from the top-right corner of your display. On iPhone SE (2nd generation), iPhone 8 or earlier, iPad, and iPod touch (7th generation), you can see the battery percentage in the status bar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.0533, 0.0063],
# [0.0533, 1.0000, 0.1121],
# [0.0063, 0.1121, 1.0000]])
sentence1, sentence2, and label| sentence1 | sentence2 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | label |
|---|---|---|
are rocking chairs bad for you? |
Studies today demonstrate that a rocking chair may actually do far more in terms of physical and mental health.” People who have mental health issues and physical problems such as arthritis, back pain, Alzheimer's, dementia, (to name a few) can benefit from a rocking chair. Rocking is a mild form of exercise. |
1.0 |
are rocking chairs bad for you? |
["'you shouldn't feel this bad'", "'you're over-reacting'", "'it's not as bad as you think'"] |
0.0 |
are rocking chairs bad for you? |
bad egg. Calling someone a bad egg is a mild, old-fashioned way to say he's a jerk. The school bully is a good example of a bad egg. A bad egg is not a nice person — she's as unpleasant and disappointing as a literal bad, or spoiled, egg would be when you cracked it open. |
0.0 |
CosineSimilarityLoss with these parameters:{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
per_device_train_batch_size: 128learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1seed: 12bf16: Truedataloader_num_workers: 4overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 12data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss |
|---|---|---|
| 0.0015 | 10 | 0.6724 |
| 0.0030 | 20 | 0.6634 |
| 0.0045 | 30 | 0.6688 |
| 0.0059 | 40 | 0.6568 |
| 0.0074 | 50 | 0.631 |
| 0.0089 | 60 | 0.6027 |
| 0.0104 | 70 | 0.5026 |
| 0.0119 | 80 | 0.277 |
| 0.0134 | 90 | 0.1714 |
| 0.0148 | 100 | 0.1485 |
| 0.0163 | 110 | 0.1411 |
| 0.0178 | 120 | 0.1484 |
| 0.0193 | 130 | 0.1571 |
| 0.0208 | 140 | 0.1471 |
| 0.0223 | 150 | 0.1457 |
| 0.0237 | 160 | 0.1422 |
| 0.0252 | 170 | 0.1571 |
| 0.0267 | 180 | 0.1396 |
| 0.0282 | 190 | 0.1523 |
| 0.0297 | 200 | 0.1488 |
| 0.0312 | 210 | 0.1402 |
| 0.0326 | 220 | 0.1344 |
| 0.0341 | 230 | 0.1404 |
| 0.0356 | 240 | 0.1458 |
| 0.0371 | 250 | 0.139 |
| 0.0386 | 260 | 0.1455 |
| 0.0401 | 270 | 0.1341 |
| 0.0415 | 280 | 0.1402 |
| 0.0430 | 290 | 0.1411 |
| 0.0445 | 300 | 0.1383 |
| 0.0460 | 310 | 0.1478 |
| 0.0475 | 320 | 0.155 |
| 0.0490 | 330 | 0.1349 |
| 0.0504 | 340 | 0.1313 |
| 0.0519 | 350 | 0.1474 |
| 0.0534 | 360 | 0.1344 |
| 0.0549 | 370 | 0.1368 |
| 0.0564 | 380 | 0.1463 |
| 0.0579 | 390 | 0.1527 |
| 0.0593 | 400 | 0.1509 |
| 0.0608 | 410 | 0.1399 |
| 0.0623 | 420 | 0.1478 |
| 0.0638 | 430 | 0.1404 |
| 0.0653 | 440 | 0.149 |
| 0.0668 | 450 | 0.1411 |
| 0.0682 | 460 | 0.1399 |
| 0.0697 | 470 | 0.1555 |
| 0.0712 | 480 | 0.1314 |
| 0.0727 | 490 | 0.1365 |
| 0.0742 | 500 | 0.1394 |
| 0.0757 | 510 | 0.141 |
| 0.0772 | 520 | 0.1341 |
| 0.0786 | 530 | 0.1395 |
| 0.0801 | 540 | 0.1384 |
| 0.0816 | 550 | 0.1455 |
| 0.0831 | 560 | 0.1394 |
| 0.0846 | 570 | 0.1405 |
| 0.0861 | 580 | 0.1446 |
| 0.0875 | 590 | 0.1395 |
| 0.0890 | 600 | 0.1388 |
| 0.0905 | 610 | 0.1316 |
| 0.0920 | 620 | 0.1367 |
| 0.0935 | 630 | 0.145 |
| 0.0950 | 640 | 0.147 |
| 0.0964 | 650 | 0.138 |
| 0.0979 | 660 | 0.139 |
| 0.0994 | 670 | 0.1388 |
| 0.1009 | 680 | 0.1417 |
| 0.1024 | 690 | 0.1379 |
| 0.1039 | 700 | 0.1468 |
| 0.1053 | 710 | 0.1355 |
| 0.1068 | 720 | 0.1344 |
| 0.1083 | 730 | 0.1382 |
| 0.1098 | 740 | 0.144 |
| 0.1113 | 750 | 0.1383 |
| 0.1128 | 760 | 0.1496 |
| 0.1142 | 770 | 0.1404 |
| 0.1157 | 780 | 0.142 |
| 0.1172 | 790 | 0.1425 |
| 0.1187 | 800 | 0.1328 |
| 0.1202 | 810 | 0.1368 |
| 0.1217 | 820 | 0.1427 |
| 0.1231 | 830 | 0.1312 |
| 0.1246 | 840 | 0.1363 |
| 0.1261 | 850 | 0.1418 |
| 0.1276 | 860 | 0.1398 |
| 0.1291 | 870 | 0.1312 |
| 0.1306 | 880 | 0.119 |
| 0.1320 | 890 | 0.1266 |
| 0.1335 | 900 | 0.1352 |
| 0.1350 | 910 | 0.135 |
| 0.1365 | 920 | 0.1309 |
| 0.1380 | 930 | 0.1313 |
| 0.1395 | 940 | 0.1243 |
| 0.1409 | 950 | 0.1243 |
| 0.1424 | 960 | 0.1318 |
| 0.1439 | 970 | 0.1305 |
| 0.1454 | 980 | 0.1422 |
| 0.1469 | 990 | 0.124 |
| 0.1484 | 1000 | 0.1254 |
| 0.1499 | 1010 | 0.1238 |
| 0.1513 | 1020 | 0.1327 |
| 0.1528 | 1030 | 0.1343 |
| 0.1543 | 1040 | 0.1224 |
| 0.1558 | 1050 | 0.1262 |
| 0.1573 | 1060 | 0.1199 |
| 0.1588 | 1070 | 0.1295 |
| 0.1602 | 1080 | 0.1244 |
| 0.1617 | 1090 | 0.1237 |
| 0.1632 | 1100 | 0.1235 |
| 0.1647 | 1110 | 0.1298 |
| 0.1662 | 1120 | 0.1249 |
| 0.1677 | 1130 | 0.1112 |
| 0.1691 | 1140 | 0.1251 |
| 0.1706 | 1150 | 0.1174 |
| 0.1721 | 1160 | 0.1267 |
| 0.1736 | 1170 | 0.1226 |
| 0.1751 | 1180 | 0.1152 |
| 0.1766 | 1190 | 0.1204 |
| 0.1780 | 1200 | 0.1165 |
| 0.1795 | 1210 | 0.1194 |
| 0.1810 | 1220 | 0.1282 |
| 0.1825 | 1230 | 0.1255 |
| 0.1840 | 1240 | 0.1124 |
| 0.1855 | 1250 | 0.1271 |
| 0.1869 | 1260 | 0.1121 |
| 0.1884 | 1270 | 0.125 |
| 0.1899 | 1280 | 0.1153 |
| 0.1914 | 1290 | 0.1311 |
| 0.1929 | 1300 | 0.1128 |
| 0.1944 | 1310 | 0.1201 |
| 0.1958 | 1320 | 0.1256 |
| 0.1973 | 1330 | 0.1344 |
| 0.1988 | 1340 | 0.1116 |
| 0.2003 | 1350 | 0.1125 |
| 0.2018 | 1360 | 0.1148 |
| 0.2033 | 1370 | 0.1185 |
| 0.2047 | 1380 | 0.123 |
| 0.2062 | 1390 | 0.1166 |
| 0.2077 | 1400 | 0.112 |
| 0.2092 | 1410 | 0.1165 |
| 0.2107 | 1420 | 0.1226 |
| 0.2122 | 1430 | 0.1143 |
| 0.2136 | 1440 | 0.1132 |
| 0.2151 | 1450 | 0.1156 |
| 0.2166 | 1460 | 0.1174 |
| 0.2181 | 1470 | 0.1178 |
| 0.2196 | 1480 | 0.1183 |
| 0.2211 | 1490 | 0.1161 |
| 0.2226 | 1500 | 0.1111 |
| 0.2240 | 1510 | 0.1131 |
| 0.2255 | 1520 | 0.1206 |
| 0.2270 | 1530 | 0.1056 |
| 0.2285 | 1540 | 0.1187 |
| 0.2300 | 1550 | 0.1203 |
| 0.2315 | 1560 | 0.118 |
| 0.2329 | 1570 | 0.1147 |
| 0.2344 | 1580 | 0.1099 |
| 0.2359 | 1590 | 0.126 |
| 0.2374 | 1600 | 0.116 |
| 0.2389 | 1610 | 0.1147 |
| 0.2404 | 1620 | 0.1126 |
| 0.2418 | 1630 | 0.1121 |
| 0.2433 | 1640 | 0.1075 |
| 0.2448 | 1650 | 0.1093 |
| 0.2463 | 1660 | 0.116 |
| 0.2478 | 1670 | 0.1071 |
| 0.2493 | 1680 | 0.1163 |
| 0.2507 | 1690 | 0.1025 |
| 0.2522 | 1700 | 0.1183 |
| 0.2537 | 1710 | 0.1186 |
| 0.2552 | 1720 | 0.114 |
| 0.2567 | 1730 | 0.1098 |
| 0.2582 | 1740 | 0.1158 |
| 0.2596 | 1750 | 0.1072 |
| 0.2611 | 1760 | 0.1138 |
| 0.2626 | 1770 | 0.1074 |
| 0.2641 | 1780 | 0.1153 |
| 0.2656 | 1790 | 0.1144 |
| 0.2671 | 1800 | 0.1119 |
| 0.2685 | 1810 | 0.1115 |
| 0.2700 | 1820 | 0.1126 |
| 0.2715 | 1830 | 0.1097 |
| 0.2730 | 1840 | 0.1087 |
| 0.2745 | 1850 | 0.1119 |
| 0.2760 | 1860 | 0.1133 |
| 0.2774 | 1870 | 0.1054 |
| 0.2789 | 1880 | 0.1048 |
| 0.2804 | 1890 | 0.1091 |
| 0.2819 | 1900 | 0.1021 |
| 0.2834 | 1910 | 0.1147 |
| 0.2849 | 1920 | 0.1178 |
| 0.2864 | 1930 | 0.1043 |
| 0.2878 | 1940 | 0.1051 |
| 0.2893 | 1950 | 0.1004 |
| 0.2908 | 1960 | 0.1087 |
| 0.2923 | 1970 | 0.1138 |
| 0.2938 | 1980 | 0.1106 |
| 0.2953 | 1990 | 0.1082 |
| 0.2967 | 2000 | 0.1073 |
| 0.2982 | 2010 | 0.1036 |
| 0.2997 | 2020 | 0.114 |
| 0.3012 | 2030 | 0.1044 |
| 0.3027 | 2040 | 0.1092 |
| 0.3042 | 2050 | 0.1075 |
| 0.3056 | 2060 | 0.102 |
| 0.3071 | 2070 | 0.1001 |
| 0.3086 | 2080 | 0.1076 |
| 0.3101 | 2090 | 0.0987 |
| 0.3116 | 2100 | 0.1106 |
| 0.3131 | 2110 | 0.1054 |
| 0.3145 | 2120 | 0.1078 |
| 0.3160 | 2130 | 0.1039 |
| 0.3175 | 2140 | 0.1091 |
| 0.3190 | 2150 | 0.1069 |
| 0.3205 | 2160 | 0.1031 |
| 0.3220 | 2170 | 0.1109 |
| 0.3234 | 2180 | 0.1057 |
| 0.3249 | 2190 | 0.1089 |
| 0.3264 | 2200 | 0.1066 |
| 0.3279 | 2210 | 0.1013 |
| 0.3294 | 2220 | 0.1031 |
| 0.3309 | 2230 | 0.1026 |
| 0.3323 | 2240 | 0.1072 |
| 0.3338 | 2250 | 0.1031 |
| 0.3353 | 2260 | 0.1052 |
| 0.3368 | 2270 | 0.1016 |
| 0.3383 | 2280 | 0.1124 |
| 0.3398 | 2290 | 0.1198 |
| 0.3412 | 2300 | 0.0978 |
| 0.3427 | 2310 | 0.1077 |
| 0.3442 | 2320 | 0.0937 |
| 0.3457 | 2330 | 0.1016 |
| 0.3472 | 2340 | 0.1132 |
| 0.3487 | 2350 | 0.099 |
| 0.3501 | 2360 | 0.1096 |
| 0.3516 | 2370 | 0.0999 |
| 0.3531 | 2380 | 0.1022 |
| 0.3546 | 2390 | 0.1069 |
| 0.3561 | 2400 | 0.1021 |
| 0.3576 | 2410 | 0.1062 |
| 0.3591 | 2420 | 0.0944 |
| 0.3605 | 2430 | 0.1047 |
| 0.3620 | 2440 | 0.1101 |
| 0.3635 | 2450 | 0.1052 |
| 0.3650 | 2460 | 0.0985 |
| 0.3665 | 2470 | 0.1069 |
| 0.3680 | 2480 | 0.1105 |
| 0.3694 | 2490 | 0.0995 |
| 0.3709 | 2500 | 0.1016 |
| 0.3724 | 2510 | 0.1104 |
| 0.3739 | 2520 | 0.11 |
| 0.3754 | 2530 | 0.0989 |
| 0.3769 | 2540 | 0.0997 |
| 0.3783 | 2550 | 0.1099 |
| 0.3798 | 2560 | 0.1068 |
| 0.3813 | 2570 | 0.1028 |
| 0.3828 | 2580 | 0.1001 |
| 0.3843 | 2590 | 0.1094 |
| 0.3858 | 2600 | 0.0973 |
| 0.3872 | 2610 | 0.1079 |
| 0.3887 | 2620 | 0.1049 |
| 0.3902 | 2630 | 0.1036 |
| 0.3917 | 2640 | 0.104 |
| 0.3932 | 2650 | 0.0942 |
| 0.3947 | 2660 | 0.0997 |
| 0.3961 | 2670 | 0.102 |
| 0.3976 | 2680 | 0.0967 |
| 0.3991 | 2690 | 0.0954 |
| 0.4006 | 2700 | 0.1028 |
| 0.4021 | 2710 | 0.0948 |
| 0.4036 | 2720 | 0.104 |
| 0.4050 | 2730 | 0.107 |
| 0.4065 | 2740 | 0.0983 |
| 0.4080 | 2750 | 0.1032 |
| 0.4095 | 2760 | 0.1052 |
| 0.4110 | 2770 | 0.1014 |
| 0.4125 | 2780 | 0.096 |
| 0.4139 | 2790 | 0.0989 |
| 0.4154 | 2800 | 0.1 |
| 0.4169 | 2810 | 0.0947 |
| 0.4184 | 2820 | 0.1054 |
| 0.4199 | 2830 | 0.0961 |
| 0.4214 | 2840 | 0.1113 |
| 0.4228 | 2850 | 0.1029 |
| 0.4243 | 2860 | 0.1066 |
| 0.4258 | 2870 | 0.0981 |
| 0.4273 | 2880 | 0.1056 |
| 0.4288 | 2890 | 0.0974 |
| 0.4303 | 2900 | 0.1037 |
| 0.4318 | 2910 | 0.1048 |
| 0.4332 | 2920 | 0.105 |
| 0.4347 | 2930 | 0.1098 |
| 0.4362 | 2940 | 0.1028 |
| 0.4377 | 2950 | 0.0992 |
| 0.4392 | 2960 | 0.1031 |
| 0.4407 | 2970 | 0.0917 |
| 0.4421 | 2980 | 0.1026 |
| 0.4436 | 2990 | 0.1006 |
| 0.4451 | 3000 | 0.0993 |
| 0.4466 | 3010 | 0.0969 |
| 0.4481 | 3020 | 0.0926 |
| 0.4496 | 3030 | 0.1019 |
| 0.4510 | 3040 | 0.0979 |
| 0.4525 | 3050 | 0.0971 |
| 0.4540 | 3060 | 0.0992 |
| 0.4555 | 3070 | 0.1038 |
| 0.4570 | 3080 | 0.1103 |
| 0.4585 | 3090 | 0.0971 |
| 0.4599 | 3100 | 0.0968 |
| 0.4614 | 3110 | 0.1053 |
| 0.4629 | 3120 | 0.1044 |
| 0.4644 | 3130 | 0.1029 |
| 0.4659 | 3140 | 0.1045 |
| 0.4674 | 3150 | 0.098 |
| 0.4688 | 3160 | 0.1007 |
| 0.4703 | 3170 | 0.1055 |
| 0.4718 | 3180 | 0.0992 |
| 0.4733 | 3190 | 0.0989 |
| 0.4748 | 3200 | 0.0976 |
| 0.4763 | 3210 | 0.0932 |
| 0.4777 | 3220 | 0.0993 |
| 0.4792 | 3230 | 0.1086 |
| 0.4807 | 3240 | 0.1001 |
| 0.4822 | 3250 | 0.093 |
| 0.4837 | 3260 | 0.0911 |
| 0.4852 | 3270 | 0.099 |
| 0.4866 | 3280 | 0.1028 |
| 0.4881 | 3290 | 0.1017 |
| 0.4896 | 3300 | 0.0976 |
| 0.4911 | 3310 | 0.1021 |
| 0.4926 | 3320 | 0.0968 |
| 0.4941 | 3330 | 0.0971 |
| 0.4955 | 3340 | 0.1037 |
| 0.4970 | 3350 | 0.099 |
| 0.4985 | 3360 | 0.1003 |
| 0.5 | 3370 | 0.0934 |
| 0.5015 | 3380 | 0.0988 |
| 0.5030 | 3390 | 0.0995 |
| 0.5045 | 3400 | 0.0983 |
| 0.5059 | 3410 | 0.096 |
| 0.5074 | 3420 | 0.1003 |
| 0.5089 | 3430 | 0.1032 |
| 0.5104 | 3440 | 0.0871 |
| 0.5119 | 3450 | 0.0839 |
| 0.5134 | 3460 | 0.1031 |
| 0.5148 | 3470 | 0.1089 |
| 0.5163 | 3480 | 0.1065 |
| 0.5178 | 3490 | 0.1128 |
| 0.5193 | 3500 | 0.102 |
| 0.5208 | 3510 | 0.0985 |
| 0.5223 | 3520 | 0.0952 |
| 0.5237 | 3530 | 0.0971 |
| 0.5252 | 3540 | 0.0991 |
| 0.5267 | 3550 | 0.0897 |
| 0.5282 | 3560 | 0.0995 |
| 0.5297 | 3570 | 0.1015 |
| 0.5312 | 3580 | 0.095 |
| 0.5326 | 3590 | 0.0964 |
| 0.5341 | 3600 | 0.1087 |
| 0.5356 | 3610 | 0.1035 |
| 0.5371 | 3620 | 0.0963 |
| 0.5386 | 3630 | 0.091 |
| 0.5401 | 3640 | 0.105 |
| 0.5415 | 3650 | 0.0977 |
| 0.5430 | 3660 | 0.0908 |
| 0.5445 | 3670 | 0.0994 |
| 0.5460 | 3680 | 0.0934 |
| 0.5475 | 3690 | 0.1031 |
| 0.5490 | 3700 | 0.101 |
| 0.5504 | 3710 | 0.0946 |
| 0.5519 | 3720 | 0.0973 |
| 0.5534 | 3730 | 0.1013 |
| 0.5549 | 3740 | 0.1013 |
| 0.5564 | 3750 | 0.1023 |
| 0.5579 | 3760 | 0.1009 |
| 0.5593 | 3770 | 0.0938 |
| 0.5608 | 3780 | 0.0941 |
| 0.5623 | 3790 | 0.0895 |
| 0.5638 | 3800 | 0.0983 |
| 0.5653 | 3810 | 0.0946 |
| 0.5668 | 3820 | 0.1008 |
| 0.5682 | 3830 | 0.099 |
| 0.5697 | 3840 | 0.0979 |
| 0.5712 | 3850 | 0.0986 |
| 0.5727 | 3860 | 0.096 |
| 0.5742 | 3870 | 0.0943 |
| 0.5757 | 3880 | 0.0985 |
| 0.5772 | 3890 | 0.0904 |
| 0.5786 | 3900 | 0.1058 |
| 0.5801 | 3910 | 0.0948 |
| 0.5816 | 3920 | 0.1001 |
| 0.5831 | 3930 | 0.0848 |
| 0.5846 | 3940 | 0.0965 |
| 0.5861 | 3950 | 0.0941 |
| 0.5875 | 3960 | 0.0977 |
| 0.5890 | 3970 | 0.1021 |
| 0.5905 | 3980 | 0.0962 |
| 0.5920 | 3990 | 0.0986 |
| 0.5935 | 4000 | 0.0993 |
| 0.5950 | 4010 | 0.1024 |
| 0.5964 | 4020 | 0.0987 |
| 0.5979 | 4030 | 0.0928 |
| 0.5994 | 4040 | 0.0921 |
| 0.6009 | 4050 | 0.0963 |
| 0.6024 | 4060 | 0.0977 |
| 0.6039 | 4070 | 0.0916 |
| 0.6053 | 4080 | 0.0949 |
| 0.6068 | 4090 | 0.1002 |
| 0.6083 | 4100 | 0.0946 |
| 0.6098 | 4110 | 0.0971 |
| 0.6113 | 4120 | 0.0995 |
| 0.6128 | 4130 | 0.101 |
| 0.6142 | 4140 | 0.1048 |
| 0.6157 | 4150 | 0.1007 |
| 0.6172 | 4160 | 0.0974 |
| 0.6187 | 4170 | 0.0934 |
| 0.6202 | 4180 | 0.1055 |
| 0.6217 | 4190 | 0.092 |
| 0.6231 | 4200 | 0.0975 |
| 0.6246 | 4210 | 0.0889 |
| 0.6261 | 4220 | 0.1039 |
| 0.6276 | 4230 | 0.1008 |
| 0.6291 | 4240 | 0.0987 |
| 0.6306 | 4250 | 0.0941 |
| 0.6320 | 4260 | 0.0941 |
| 0.6335 | 4270 | 0.0999 |
| 0.6350 | 4280 | 0.0952 |
| 0.6365 | 4290 | 0.0908 |
| 0.6380 | 4300 | 0.0943 |
| 0.6395 | 4310 | 0.1068 |
| 0.6409 | 4320 | 0.0976 |
| 0.6424 | 4330 | 0.0972 |
| 0.6439 | 4340 | 0.0958 |
| 0.6454 | 4350 | 0.0936 |
| 0.6469 | 4360 | 0.0908 |
| 0.6484 | 4370 | 0.0963 |
| 0.6499 | 4380 | 0.0986 |
| 0.6513 | 4390 | 0.0905 |
| 0.6528 | 4400 | 0.0967 |
| 0.6543 | 4410 | 0.0933 |
| 0.6558 | 4420 | 0.0954 |
| 0.6573 | 4430 | 0.0932 |
| 0.6588 | 4440 | 0.0846 |
| 0.6602 | 4450 | 0.1033 |
| 0.6617 | 4460 | 0.0976 |
| 0.6632 | 4470 | 0.0914 |
| 0.6647 | 4480 | 0.0997 |
| 0.6662 | 4490 | 0.0952 |
| 0.6677 | 4500 | 0.0984 |
| 0.6691 | 4510 | 0.0915 |
| 0.6706 | 4520 | 0.1024 |
| 0.6721 | 4530 | 0.1015 |
| 0.6736 | 4540 | 0.094 |
| 0.6751 | 4550 | 0.1044 |
| 0.6766 | 4560 | 0.0968 |
| 0.6780 | 4570 | 0.1026 |
| 0.6795 | 4580 | 0.1041 |
| 0.6810 | 4590 | 0.1057 |
| 0.6825 | 4600 | 0.0983 |
| 0.6840 | 4610 | 0.0921 |
| 0.6855 | 4620 | 0.0979 |
| 0.6869 | 4630 | 0.097 |
| 0.6884 | 4640 | 0.0956 |
| 0.6899 | 4650 | 0.0965 |
| 0.6914 | 4660 | 0.0968 |
| 0.6929 | 4670 | 0.0916 |
| 0.6944 | 4680 | 0.104 |
| 0.6958 | 4690 | 0.1017 |
| 0.6973 | 4700 | 0.0992 |
| 0.6988 | 4710 | 0.0962 |
| 0.7003 | 4720 | 0.0872 |
| 0.7018 | 4730 | 0.0917 |
| 0.7033 | 4740 | 0.0956 |
| 0.7047 | 4750 | 0.1029 |
| 0.7062 | 4760 | 0.0899 |
| 0.7077 | 4770 | 0.0931 |
| 0.7092 | 4780 | 0.0922 |
| 0.7107 | 4790 | 0.0909 |
| 0.7122 | 4800 | 0.0928 |
| 0.7136 | 4810 | 0.0989 |
| 0.7151 | 4820 | 0.0985 |
| 0.7166 | 4830 | 0.0947 |
| 0.7181 | 4840 | 0.0964 |
| 0.7196 | 4850 | 0.0901 |
| 0.7211 | 4860 | 0.0958 |
| 0.7226 | 4870 | 0.0938 |
| 0.7240 | 4880 | 0.0973 |
| 0.7255 | 4890 | 0.0947 |
| 0.7270 | 4900 | 0.0963 |
| 0.7285 | 4910 | 0.0876 |
| 0.7300 | 4920 | 0.0942 |
| 0.7315 | 4930 | 0.0933 |
| 0.7329 | 4940 | 0.1006 |
| 0.7344 | 4950 | 0.091 |
| 0.7359 | 4960 | 0.0951 |
| 0.7374 | 4970 | 0.0919 |
| 0.7389 | 4980 | 0.0932 |
| 0.7404 | 4990 | 0.1017 |
| 0.7418 | 5000 | 0.0945 |
| 0.7433 | 5010 | 0.0918 |
| 0.7448 | 5020 | 0.0972 |
| 0.7463 | 5030 | 0.0989 |
| 0.7478 | 5040 | 0.101 |
| 0.7493 | 5050 | 0.0963 |
| 0.7507 | 5060 | 0.0846 |
| 0.7522 | 5070 | 0.0977 |
| 0.7537 | 5080 | 0.0975 |
| 0.7552 | 5090 | 0.0983 |
| 0.7567 | 5100 | 0.0994 |
| 0.7582 | 5110 | 0.0941 |
| 0.7596 | 5120 | 0.0945 |
| 0.7611 | 5130 | 0.0877 |
| 0.7626 | 5140 | 0.0971 |
| 0.7641 | 5150 | 0.0964 |
| 0.7656 | 5160 | 0.0926 |
| 0.7671 | 5170 | 0.0907 |
| 0.7685 | 5180 | 0.0983 |
| 0.7700 | 5190 | 0.097 |
| 0.7715 | 5200 | 0.0953 |
| 0.7730 | 5210 | 0.0913 |
| 0.7745 | 5220 | 0.0853 |
| 0.7760 | 5230 | 0.0919 |
| 0.7774 | 5240 | 0.0979 |
| 0.7789 | 5250 | 0.0918 |
| 0.7804 | 5260 | 0.0964 |
| 0.7819 | 5270 | 0.1012 |
| 0.7834 | 5280 | 0.0977 |
| 0.7849 | 5290 | 0.0986 |
| 0.7864 | 5300 | 0.0954 |
| 0.7878 | 5310 | 0.0878 |
| 0.7893 | 5320 | 0.0959 |
| 0.7908 | 5330 | 0.0929 |
| 0.7923 | 5340 | 0.09 |
| 0.7938 | 5350 | 0.0913 |
| 0.7953 | 5360 | 0.0973 |
| 0.7967 | 5370 | 0.0914 |
| 0.7982 | 5380 | 0.0992 |
| 0.7997 | 5390 | 0.1011 |
| 0.8012 | 5400 | 0.1031 |
| 0.8027 | 5410 | 0.0875 |
| 0.8042 | 5420 | 0.1005 |
| 0.8056 | 5430 | 0.1005 |
| 0.8071 | 5440 | 0.091 |
| 0.8086 | 5450 | 0.099 |
| 0.8101 | 5460 | 0.1058 |
| 0.8116 | 5470 | 0.0969 |
| 0.8131 | 5480 | 0.0944 |
| 0.8145 | 5490 | 0.0962 |
| 0.8160 | 5500 | 0.0832 |
| 0.8175 | 5510 | 0.0991 |
| 0.8190 | 5520 | 0.0977 |
| 0.8205 | 5530 | 0.0959 |
| 0.8220 | 5540 | 0.0954 |
| 0.8234 | 5550 | 0.0941 |
| 0.8249 | 5560 | 0.0883 |
| 0.8264 | 5570 | 0.0901 |
| 0.8279 | 5580 | 0.0908 |
| 0.8294 | 5590 | 0.0946 |
| 0.8309 | 5600 | 0.0925 |
| 0.8323 | 5610 | 0.09 |
| 0.8338 | 5620 | 0.0935 |
| 0.8353 | 5630 | 0.0933 |
| 0.8368 | 5640 | 0.0999 |
| 0.8383 | 5650 | 0.0987 |
| 0.8398 | 5660 | 0.0917 |
| 0.8412 | 5670 | 0.0915 |
| 0.8427 | 5680 | 0.0966 |
| 0.8442 | 5690 | 0.0962 |
| 0.8457 | 5700 | 0.0964 |
| 0.8472 | 5710 | 0.0975 |
| 0.8487 | 5720 | 0.0962 |
| 0.8501 | 5730 | 0.0889 |
| 0.8516 | 5740 | 0.0907 |
| 0.8531 | 5750 | 0.0952 |
| 0.8546 | 5760 | 0.0978 |
| 0.8561 | 5770 | 0.1008 |
| 0.8576 | 5780 | 0.0968 |
| 0.8591 | 5790 | 0.0905 |
| 0.8605 | 5800 | 0.088 |
| 0.8620 | 5810 | 0.0878 |
| 0.8635 | 5820 | 0.0946 |
| 0.8650 | 5830 | 0.0919 |
| 0.8665 | 5840 | 0.0922 |
| 0.8680 | 5850 | 0.0937 |
| 0.8694 | 5860 | 0.0966 |
| 0.8709 | 5870 | 0.0935 |
| 0.8724 | 5880 | 0.0969 |
| 0.8739 | 5890 | 0.0932 |
| 0.8754 | 5900 | 0.0924 |
| 0.8769 | 5910 | 0.0896 |
| 0.8783 | 5920 | 0.094 |
| 0.8798 | 5930 | 0.0892 |
| 0.8813 | 5940 | 0.0948 |
| 0.8828 | 5950 | 0.0965 |
| 0.8843 | 5960 | 0.0906 |
| 0.8858 | 5970 | 0.0963 |
| 0.8872 | 5980 | 0.0857 |
| 0.8887 | 5990 | 0.0969 |
| 0.8902 | 6000 | 0.0866 |
| 0.8917 | 6010 | 0.0928 |
| 0.8932 | 6020 | 0.0954 |
| 0.8947 | 6030 | 0.0939 |
| 0.8961 | 6040 | 0.0915 |
| 0.8976 | 6050 | 0.0971 |
| 0.8991 | 6060 | 0.092 |
| 0.9006 | 6070 | 0.0998 |
| 0.9021 | 6080 | 0.0926 |
| 0.9036 | 6090 | 0.0904 |
| 0.9050 | 6100 | 0.1039 |
| 0.9065 | 6110 | 0.0978 |
| 0.9080 | 6120 | 0.0927 |
| 0.9095 | 6130 | 0.0998 |
| 0.9110 | 6140 | 0.0987 |
| 0.9125 | 6150 | 0.0957 |
| 0.9139 | 6160 | 0.0931 |
| 0.9154 | 6170 | 0.0944 |
| 0.9169 | 6180 | 0.0982 |
| 0.9184 | 6190 | 0.0946 |
| 0.9199 | 6200 | 0.0946 |
| 0.9214 | 6210 | 0.0969 |
| 0.9228 | 6220 | 0.095 |
| 0.9243 | 6230 | 0.0966 |
| 0.9258 | 6240 | 0.0974 |
| 0.9273 | 6250 | 0.0859 |
| 0.9288 | 6260 | 0.0923 |
| 0.9303 | 6270 | 0.0865 |
| 0.9318 | 6280 | 0.0965 |
| 0.9332 | 6290 | 0.0877 |
| 0.9347 | 6300 | 0.0976 |
| 0.9362 | 6310 | 0.092 |
| 0.9377 | 6320 | 0.0967 |
| 0.9392 | 6330 | 0.0892 |
| 0.9407 | 6340 | 0.0928 |
| 0.9421 | 6350 | 0.0958 |
| 0.9436 | 6360 | 0.0967 |
| 0.9451 | 6370 | 0.0916 |
| 0.9466 | 6380 | 0.0923 |
| 0.9481 | 6390 | 0.1018 |
| 0.9496 | 6400 | 0.096 |
| 0.9510 | 6410 | 0.0864 |
| 0.9525 | 6420 | 0.0936 |
| 0.9540 | 6430 | 0.0894 |
| 0.9555 | 6440 | 0.0971 |
| 0.9570 | 6450 | 0.0999 |
| 0.9585 | 6460 | 0.0935 |
| 0.9599 | 6470 | 0.0955 |
| 0.9614 | 6480 | 0.0953 |
| 0.9629 | 6490 | 0.0919 |
| 0.9644 | 6500 | 0.0881 |
| 0.9659 | 6510 | 0.0901 |
| 0.9674 | 6520 | 0.0955 |
| 0.9688 | 6530 | 0.0903 |
| 0.9703 | 6540 | 0.091 |
| 0.9718 | 6550 | 0.0943 |
| 0.9733 | 6560 | 0.0943 |
| 0.9748 | 6570 | 0.0952 |
| 0.9763 | 6580 | 0.092 |
| 0.9777 | 6590 | 0.0991 |
| 0.9792 | 6600 | 0.1006 |
| 0.9807 | 6610 | 0.0934 |
| 0.9822 | 6620 | 0.0951 |
| 0.9837 | 6630 | 0.0919 |
| 0.9852 | 6640 | 0.0939 |
| 0.9866 | 6650 | 0.0883 |
| 0.9881 | 6660 | 0.0838 |
| 0.9896 | 6670 | 0.0919 |
| 0.9911 | 6680 | 0.0978 |
| 0.9926 | 6690 | 0.0963 |
| 0.9941 | 6700 | 0.0907 |
| 0.9955 | 6710 | 0.0993 |
| 0.9970 | 6720 | 0.0893 |
| 0.9985 | 6730 | 0.0917 |
| 1.0 | 6740 | 0.0997 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
answerdotai/ModernBERT-base