cs2764's picture
Upload MLX converted model with quantization settings
999c9e1 verified
metadata
base_model: unsloth/DeepSeek-R1-0528-BF16
language:
  - en
library_name: transformers
license: mit
tags:
  - deepseek
  - unsloth
  - transformers
  - mlx
  - mlx-my-repo

cs2764/DeepSeek-R1-0528-BF16-mlx-3Bit-gs32

The Model cs2764/DeepSeek-R1-0528-BF16-mlx-3Bit-gs32 was converted to MLX format from unsloth/DeepSeek-R1-0528-BF16 using mlx-lm version 0.26.2.

Quantization Details

This model was converted with the following quantization settings:

  • Quantization Strategy: 3-bit quantization
  • Group Size: 32
  • Average bits per weight: 4.002

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("cs2764/DeepSeek-R1-0528-BF16-mlx-3Bit-gs32")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)