Model Card for Qwen-3-0.6B-it-Medical-LoRA

This model is a fine-tuned version of unsloth/qwen3-0.6b-unsloth-bnb-4bit. It has been trained using TRL.

Training procedure

This model was trained with SFT.

Usage

HuggingFace Authentication

import os
from huggingface_hub import login

# Set the Hugging Face API token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "<your_huggingface_token>"

# # Initialize API
login(os.environ.get("HUGGINGFACEHUB_API_TOKEN"))

Inference

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import TextStreamer
from peft import PeftModel

device = "cuda" if torch.cuda.is_available() else "cpu"

# Define model and LoRA adapter paths
base_model_name = "Qwen/Qwen3-0.6B"
lora_adapter_name = "danhtran2mind/Qwen-3-0.6B-Instruct-Vi-Medical-LoRA"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)

# Load base model with optimized settings
model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    torch_dtype=torch.float16,  # Use FP16 for efficiency
    device_map=device,
    trust_remote_code=True
)

# Apply LoRA adapter
model = PeftModel.from_pretrained(model, lora_adapter_name)

# Set model to evaluation mode
model.eval()

prompt = ("Khi nghi ngờ bị loét dạ dày tá tràng nên đến khoa nào "
            "tại bệnh viện để thăm khám?")

# Set random seed for reproducibility
seed = 42
torch.manual_seed(seed)
if torch.cuda.is_available():
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

messages = [
    {"role" : "user", "content" : prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize = False,
    add_generation_prompt = True, # Must add for generation
    enable_thinking = False, # Disable thinking
)

_ = model.generate(
    **tokenizer(text, return_tensors = "pt").to(device),
    max_new_tokens = 2048, # Increase for longer outputs!
    temperature = 0.7, top_p = 0.9, top_k = 20, # For non thinking
    streamer = TextStreamer(tokenizer, skip_prompt = True, skip_special_tokens=True),
)
Khi nghi ngờ bị loét dạ dày tá tràng, bạn nên đến phòng khám chuyên khoa Giai đoạn Trung tâm Nghi ngờ Loét Dạ dày để được tư vấn và đánh giá chẩn đoán chính xác.

Framework versions

  • PEFT 0.15.2
  • TRL: 0.19.1
  • Transformers: 4.51.3
  • Pytorch: 2.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citations

Cite TRL as:

@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}
Downloads last month
72
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for danhtran2mind/Qwen-3-0.6B-Instruct-Vi-Medical-LoRA

Finetuned
Qwen/Qwen3-0.6B
Adapter
(44)
this model

Dataset used to train danhtran2mind/Qwen-3-0.6B-Instruct-Vi-Medical-LoRA

Space using danhtran2mind/Qwen-3-0.6B-Instruct-Vi-Medical-LoRA 1

Collection including danhtran2mind/Qwen-3-0.6B-Instruct-Vi-Medical-LoRA