whisper-small-aifc / README.md
darynka-xo's picture
Upload processor
5b6cb8c verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - darynka-xo/whisper_finetune_dataset
metrics:
  - wer
model-index:
  - name: Whisper Small En - AIFC
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: whisper_finetune_dataset
          type: darynka-xo/whisper_finetune_dataset
          config: default
          split: None
          args: 'config: en, split: test'
        metrics:
          - type: wer
            value: 1.30760286407866
            name: Wer

Whisper Small En - AIFC

This model is a fine-tuned version of openai/whisper-small on the whisper_finetune_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0397
  • Wer: 1.3076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0043 1.1186 1000 0.0453 1.6911
0.0028 2.2371 2000 0.0396 1.4198
0.0004 3.3557 3000 0.0394 1.3464
0.0003 4.4743 4000 0.0397 1.3076

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1