Questions
stringlengths
14
191
Answers
stringlengths
6
29k
Who is at risk for Hemolytic Anemia? ?
Hemolytic anemia can affect people of all ages and races and both sexes. Some types of hemolytic anemia are more likely to occur in certain populations than others. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency mostly affects males of African or Mediterranean descent. In the United States, the condition is more common among African Americans than Caucasians. In the United States, sickle cell anemia mainly affects African Americans.
What are the symptoms of Hemolytic Anemia ?
The signs and symptoms of hemolytic anemia will depend on the type and severity of the disease. People who have mild hemolytic anemia often have no signs or symptoms. More severe hemolytic anemia may cause many signs and symptoms, and they may be serious. Many of the signs and symptoms of hemolytic anemia apply to all types of anemia. Signs and Symptoms of Anemia The most common symptom of all types of anemia is fatigue (tiredness). Fatigue occurs because your body doesn't have enough red blood cells to carry oxygen to its various parts. A low red blood cell count also can cause shortness of breath, dizziness, headache, coldness in your hands and feet, pale skin, and chest pain. A lack of red blood cells also means that your heart has to work harder to move oxygen-rich blood through your body. This can lead to arrhythmias (irregular heartbeats), a heart murmur, an enlarged heart, or even heart failure. Signs and Symptoms of Hemolytic Anemia Jaundice Jaundice refers to a yellowish color of the skin or whites of the eyes. When red blood cells die, they release hemoglobin into the bloodstream. The hemoglobin is broken down into a compound called bilirubin, which gives the skin and eyes a yellowish color. Bilirubin also causes urine to be dark yellow or brown. Pain in the Upper Abdomen Gallstones or an enlarged spleen may cause pain in the upper abdomen. High levels of bilirubin and cholesterol (from the breakdown of red blood cells) can form into stones in the gallbladder. These stones can be painful. The spleen is an organ in the abdomen that helps fight infection and filters out old or damaged blood cells. In hemolytic anemia, the spleen may be enlarged, which can be painful. Leg Ulcers and Pain In people who have sickle cell anemia, the sickle-shaped cells can clog small blood vessels and block blood flow. This can cause leg sores and pain throughout the body. A Severe Reaction to a Blood Transfusion You may develop hemolytic anemia due to a blood transfusion. This can happen if the transfused blood is a different blood type than your blood. Signs and symptoms of a severe reaction to a transfusion include fever, chills, low blood pressure, and shock. (Shock is a life-threatening condition that occurs if the body isn't getting enough blood flow.)
How to diagnose Hemolytic Anemia ?
Your doctor will diagnose hemolytic anemia based on your medical and family histories, a physical exam, and test results. Specialists Involved Primary care doctors, such as a family doctor or pediatrician, may help diagnose and treat hemolytic anemia. Your primary care doctor also may refer you to a hematologist. This is a doctor who specializes in diagnosing and treating blood diseases and disorders. Doctors and clinics that specialize in treating inherited blood disorders, such as sickle cell anemia and thalassemias, also may be involved. If your hemolytic anemia is inherited, you may want to consult a genetic counselor. A counselor can help you understand your risk of having a child who has the condition. He or she also can explain the choices that are available to you. Medical and Family Histories To find the cause and severity of hemolytic anemia, your doctor may ask detailed questions about your symptoms, personal medical history, and your family medical history. He or she may ask whether: You or anyone in your family has had problems with anemia You've recently had any illnesses or medical conditions You take any medicines, and which ones You've been exposed to certain chemicals or substances You have an artificial heart valve or other medical device that could damage your red blood cells Physical Exam Your doctor will do a physical exam to check for signs of hemolytic anemia. He or she will try to find out how severe the condition is and what's causing it. The exam may include: Checking for jaundice (a yellowish color of the skin or whites of the eyes) Listening to your heart for rapid or irregular heartbeats Listening for rapid or uneven breathing Feeling your abdomen to check the size of your spleen Doing a pelvic and rectal exam to check for internal bleeding Diagnostic Tests and Procedures Many tests are used to diagnose hemolytic anemia. These tests can help confirm a diagnosis, look for a cause, and find out how severe the condition is. Complete Blood Count Often, the first test used to diagnose anemia is a complete blood count (CBC). The CBC measures many parts of your blood. This test checks your hemoglobin and hematocrit (hee-MAT-oh-crit) levels. Hemoglobin is an iron-rich protein in red blood cells that carries oxygen to the body. Hematocrit is a measure of how much space red blood cells take up in your blood. A low level of hemoglobin or hematocrit is a sign of anemia. The normal range of these levels may vary in certain racial and ethnic populations. Your doctor can explain your test results to you. The CBC also checks the number of red blood cells, white blood cells, and platelets in your blood. Abnormal results may be a sign of hemolytic anemia, a different blood disorder, an infection, or another condition. Finally, the CBC looks at mean corpuscular (kor-PUS-kyu-lar) volume (MCV). MCV is a measure of the average size of your red blood cells. The results may be a clue as to the cause of your anemia. Other Blood Tests If the CBC results confirm that you have anemia, you may need other blood tests to find out what type of anemia you have and how severe it is. Reticulocyte count. A reticulocyte (re-TIK-u-lo-site) count measures the number of young red blood cells in your blood. The test shows whether your bone marrow is making red blood cells at the correct rate. People who have hemolytic anemia usually have high reticulocyte counts because their bone marrow is working hard to replace the destroyed red blood cells. Peripheral smear. For this test, your doctor will look at your red blood cells through a microscope. Some types of hemolytic anemia change the normal shape of red blood cells. Coombs' test. This test can show whether your body is making antibodies (proteins) to destroy red blood cells. Haptoglobin, bilirubin, and liver function tests. When red blood cells break down, they release hemoglobin into the bloodstream. The hemoglobin combines with a chemical called haptoglobin. A low level of haptoglobin in the bloodstream is a sign of hemolytic anemia. Hemoglobin is broken down into a compound called bilirubin. High levels of bilirubin in the bloodstream may be a sign of hemolytic anemia. High levels of this compound also occur with some liver and gallbladder diseases. Thus, you may need liver function tests to find out what's causing the high bilirubin levels. Hemoglobin electrophoresis. This test looks at the different types of hemoglobin in your blood. It can help diagnose the type of anemia you have. Testing for paroxysmal nocturnal hemoglobinuria (PNH). In PNH, the red blood cells are missing certain proteins. The test for PNH can detect red blood cells that are missing these proteins. Osmotic fragility test. This test looks for red blood cells that are more fragile than normal. These cells may be a sign of hereditary spherocytosis (an inherited type of hemolytic anemia). Testing for glucose-6-phosphate dehydrogenase (G6PD) deficiency. In G6PD deficiency, the red blood cells are missing an important enzyme called G6PD. The test for G6PD deficiency looks for this enzyme in a sample of blood. Urine Test A urine test will look for the presence of free hemoglobin (a protein that carries oxygen in the blood) and iron. Bone Marrow Tests Bone marrow tests show whether your bone marrow is healthy and making enough blood cells. The two bone marrow tests are aspiration (as-pi-RA-shun) and biopsy. For a bone marrow aspiration, your doctor removes a small amount of fluid bone marrow through a needle. The sample is examined under a microscope to check for faulty cells. A bone marrow biopsy may be done at the same time as an aspiration or afterward. For this test, your doctor removes a small amount of bone marrow tissue through a needle. The tissue is examined to check the number and type of cells in the bone marrow. You may not need bone marrow tests if blood tests show what's causing your hemolytic anemia. Tests for Other Causes of Anemia Because anemia has many causes, you may have tests for conditions such as: Kidney failure Lead poisoning Vitamin or iron deficiency Newborn Testing for Sickle Cell Anemia and G6PD Deficiency All States mandate screening for sickle cell anemia as part of their newborn screening programs. Some States also mandate screening for G6PD deficiency. These inherited types of hemolytic anemia can be detected with routine blood tests. Diagnosing these conditions as early as possible is important so that children can get proper treatment.
What are the treatments for Hemolytic Anemia ?
Treatments for hemolytic anemia include blood transfusions, medicines, plasmapheresis (PLAZ-meh-feh-RE-sis), surgery, blood and marrow stem cell transplants, and lifestyle changes. People who have mild hemolytic anemia may not need treatment, as long as the condition doesn't worsen. People who have severe hemolytic anemia usually need ongoing treatment. Severe hemolytic anemia can be fatal if it's not properly treated. Goals of Treatment The goals of treating hemolytic anemia include: Reducing or stopping the destruction of red blood cells Increasing the red blood cell count to an acceptable level Treating the underlying cause of the condition Treatment will depend on the type, cause, and severity of the hemolytic anemia you have. Your doctor also will consider your age, overall health, and medical history. If you have an inherited form of hemolytic anemia, it's a lifelong condition that may require ongoing treatment. If you have an acquired form of hemolytic anemia, it may go away if its cause can be found and corrected. Blood Transfusions Blood transfusions are used to treat severe or life-threatening hemolytic anemia. A blood transfusion is a common procedure in which blood is given to you through an intravenous (IV) line in one of your blood vessels. Transfusions require careful matching of donated blood with the recipient's blood. For more information, go to the Health Topics Blood Transfusion article. Medicines Medicines can improve some types of hemolytic anemia, especially autoimmune hemolytic anemia (AIHA). Corticosteroid medicines, such as prednisone, can stop your immune system from, or limit its ability to, make antibodies (proteins) against red blood cells. If you don't respond to corticosteroids, your doctor may prescribe other medicines to suppress your immune system. Examples include the medicines rituximab and cyclosporine. If you have severe sickle cell anemia, your doctor may recommend a medicine called hydroxyurea. This medicine prompts your body to make fetal hemoglobin. Fetal hemoglobin is the type of hemoglobin that newborns have. In people who have sickle cell anemia, fetal hemoglobin helps prevent red blood cells from sickling and improves anemia. Plasmapheresis Plasmapheresis is a procedure that removes antibodies from the blood. For this procedure, blood is taken from your body using a needle inserted into a vein. The plasma, which contains the antibodies, is separated from the rest of the blood. Then, plasma from a donor and the rest of the blood is put back in your body. This treatment may help if other treatments for immune hemolytic anemia don't work. Surgery Some people who have hemolytic anemia may need surgery to remove their spleens. The spleen is an organ in the abdomen. A healthy spleen helps fight infection and filters out old or damaged blood cells. An enlarged or diseased spleen may remove more red blood cells than normal, causing anemia. Removing the spleen can stop or reduce high rates of red blood cell destruction. Blood and Marrow Stem Cell Transplant In some types of hemolytic anemia, such as thalassemias, the bone marrow doesn't make enough healthy red blood cells. The red blood cells it does make may be destroyed before their normal lifespan is over. Blood and marrow stem cell transplants may be used to treat these types of hemolytic anemia. A blood and marrow stem cell transplant replaces damaged stem cells with healthy ones from another person (a donor). During the transplant, which is like a blood transfusion, you get donated stem cells through a tube placed in a vein. Once the stem cells are in your body, they travel to your bone marrow and begin making new blood cells. For more information, go to the Health Topics Blood and Marrow Stem Cell Transplant article. Lifestyle Changes If you have AIHA with cold-reactive antibodies, try to avoid cold temperatures. This can help prevent the breakdown of red blood cells. It's very important to protect your fingers, toes, and ears from the cold. To protect yourself, you can: Wear gloves or mittens when taking food out of the refrigerator or freezer. Wear a hat, scarf, and a coat with snug cuffs during cold weather. Turn down air conditioning or dress warmly while in air-conditioned spaces. Warm up the car before driving in cold weather. People born with glucose-6-phosphate dehydrogenase (G6PD) deficiency can avoid substances that may trigger anemia. For example, avoid fava beans, naphthalene (a substance found in some moth balls), and certain medicines (as your doctor advises).
How to prevent Hemolytic Anemia ?
You can't prevent inherited types of hemolytic anemia. One exception is glucose-6-phosphate dehydrogenase (G6PD) deficiency. If you're born with G6PD deficiency, you can avoid substances that may trigger the condition. For example, avoid fava beans, naphthalene (a substance found in some moth balls), and certain medicines (as your doctor advises). Some types of acquired hemolytic anemia can be prevented. For example, reactions to blood transfusions, which can cause hemolytic anemia, can be prevented. This requires careful matching of blood types between the blood donor and the recipient. Prompt and proper prenatal care can help you avoid the problems of Rh incompatibility. This condition can occur during pregnancy if a woman has Rh-negative blood and her baby has Rh-positive blood. "Rh-negative" and "Rh-positive" refer to whether your blood has Rh factor. Rh factor is a protein on red blood cells. Rh incompatibility can lead to hemolytic anemia in a fetus or newborn.
What is (are) Overweight and Obesity ?
Espaol The terms "overweight" and "obesity" refer to body weight thats greater than what is considered healthy for a certain height. The most useful measure of overweight and obesity is body mass index (BMI). BMI is calculated from your height and weight. For more information about BMI, go to "How Are Overweight and Obesity Diagnosed?" Overview Millions of Americans and people worldwide are overweight or obese. Being overweight or obese puts you at risk for many health problems. The more body fat that you have and the more you weigh, the more likely you are to develop: Coronary heart disease High blood pressure Type 2 diabetes Gallstones Breathing problems Certain cancers Your weight is the result of many factors. These factors include environment, family history and genetics, metabolism (the way your body changes food and oxygen into energy), behavior or habits, and more. You can't change some factors, such as family history. However, you can change other factors, such as your lifestyle habits. For example, follow a healthy eating plan and keep your calorie needs in mind. Be physically active and try to limit the amount of time that you're inactive. Weight-loss medicines and surgery also are options for some people if lifestyle changes aren't enough. Outlook Reaching and staying at a healthy weight is a long-term challenge for people who are overweight or obese. But it also is a chance to lower your risk for other serious health problems. With the right treatment and motivation, it's possible to lose weight and lower your long-term disease risk.
What causes Overweight and Obesity ?
Lack of Energy Balance A lack of energy balance most often causes overweight and obesity. Energy balance means that your energy IN equals your energy OUT. Energy IN is the amount of energy or calories you get from food and drinks. Energy OUT is the amount of energy your body uses for things like breathing, digesting, and being physically active. To maintain a healthy weight, your energy IN and OUT don't have to balance exactly every day. It's the balance over time that helps you maintain a healthy weight. The same amount of energy IN and energy OUT over time = weight stays the same More energy IN than energy OUT over time = weight gain More energy OUT than energy IN over time = weight loss Overweight and obesity happen over time when you take in more calories than you use. Other Causes An Inactive Lifestyle Many Americans aren't very physically active. One reason for this is that many people spend hours in front of TVs and computers doing work, schoolwork, and leisure activities. In fact, more than 2 hours a day of regular TV viewing time has been linked to overweight and obesity. Other reasons for not being active include: relying on cars instead of walking, fewer physical demands at work or at home because of modern technology and conveniences, and lack of physical education classes in schools. People who are inactive are more likely to gain weight because they don't burn the calories that they take in from food and drinks. An inactive lifestyle also raises your risk for coronary heart disease, high blood pressure, diabetes, colon cancer, and other health problems. Environment Our environment doesn't support healthy lifestyle habits; in fact, it encourages obesity. Some reasons include: Lack of neighborhood sidewalks and safe places for recreation. Not having area parks, trails, sidewalks, and affordable gyms makes it hard for people to be physically active. Work schedules. People often say that they don't have time to be physically active because of long work hours and time spent commuting. Oversized food portions. Americans are exposed to huge food portions in restaurants, fast food places, gas stations, movie theaters, supermarkets, and even at home. Some of these meals and snacks can feed two or more people. Eating large portions means too much energy IN. Over time, this will cause weight gain if it isn't balanced with physical activity. Lack of access to healthy foods. Some people don't live in neighborhoods that have supermarkets that sell healthy foods, such as fresh fruits and vegetables. Or, for some people, these healthy foods are too costly. Food advertising. Americans are surrounded by ads from food companies. Often children are the targets of advertising for high-calorie, high-fat snacks and sugary drinks. The goal of these ads is to sway people to buy these high-calorie foods, and often they do. Genes and Family History Studies of identical twins who have been raised apart show that genes have a strong influence on a person's weight. Overweight and obesity tend to run in families. Your chances of being overweight are greater if one or both of your parents are overweight or obese. Your genes also may affect the amount of fat you store in your body and where on your body you carry the extra fat. Because families also share food and physical activity habits, a link exists between genes and the environment. Children adopt the habits of their parents. A child who has overweight parents who eat high-calorie foods and are inactive will likely become overweight too. However, if the family adopts healthy food and physical activity habits, the child's chance of being overweight or obese is reduced. Health Conditions Some hormone problems may cause overweight and obesity, such as underactive thyroid (hypothyroidism), Cushing's syndrome, and polycystic ovarian syndrome (PCOS). Underactive thyroid is a condition in which the thyroid gland doesn't make enough thyroid hormone. Lack of thyroid hormone will slow down your metabolism and cause weight gain. You'll also feel tired and weak. Cushing's syndrome is a condition in which the body's adrenal glands make too much of the hormone cortisol. Cushing's syndrome also can develop if a person takes high doses of certain medicines, such as prednisone, for long periods. People who have Cushing's syndrome gain weight, have upper-body obesity, a rounded face, fat around the neck, and thin arms and legs. PCOS is a condition that affects about 510 percent of women of childbearing age. Women who have PCOS often are obese, have excess hair growth, and have reproductive problems and other health issues. These problems are caused by high levels of hormones called androgens. Medicines Certain medicines may cause you to gain weight. These medicines include some corticosteroids, antidepressants, and seizure medicines. These medicines can slow the rate at which your body burns calories, increase your appetite, or cause your body to hold on to extra water. All of these factors can lead to weight gain. Emotional Factors Some people eat more than usual when they're bored, angry, or stressed. Over time, overeating will lead to weight gain and may cause overweight or obesity. Smoking Some people gain weight when they stop smoking. One reason is that food often tastes and smells better after quitting smoking. Another reason is because nicotine raises the rate at which your body burns calories, so you burn fewer calories when you stop smoking. However, smoking is a serious health risk, and quitting is more important than possible weight gain. Age As you get older, you tend to lose muscle, especially if you're less active. Muscle loss can slow down the rate at which your body burns calories. If you don't reduce your calorie intake as you get older, you may gain weight. Midlife weight gain in women is mainly due to aging and lifestyle, but menopause also plays a role. Many women gain about 5 pounds during menopause and have more fat around the waist than they did before. Pregnancy During pregnancy, women gain weight to support their babies growth and development. After giving birth, some women find it hard to lose the weight. This may lead to overweight or obesity, especially after a few pregnancies. Lack of Sleep Research shows that lack of sleep increases the risk of obesity. For example, one study of teenagers showed that with each hour of sleep lost, the odds of becoming obese went up. Lack of sleep increases the risk of obesity in other age groups as well. People who sleep fewer hours also seem to prefer eating foods that are higher in calories and carbohydrates, which can lead to overeating, weight gain, and obesity. Sleep helps maintain a healthy balance of the hormones that make you feel hungry (ghrelin) or full (leptin). When you don't get enough sleep, your level of ghrelin goes up and your level of leptin goes down. This makes you feel hungrier than when you're well-rested. Sleep also affects how your body reacts to insulin, the hormone that controls your blood glucose (sugar) level. Lack of sleep results in a higher than normal blood sugar level, which may increase your risk for diabetes. For more information, go to the Health Topics Sleep Deprivation and Deficiency article.
Who is at risk for Overweight and Obesity? ?
Being overweight or obese isn't a cosmetic problem. These conditions greatly raise your risk for other health problems. Overweight and Obesity-Related Health Problems in Adults Coronary Heart Disease As your body mass index rises, so does your risk for coronary heart disease (CHD). CHD is a condition in which a waxy substance called plaque (plak) builds up inside the coronary arteries. These arteries supply oxygen-rich blood to your heart. Plaque can narrow or block the coronary arteries and reduce blood flow to the heart muscle. This can cause angina (an-JI-nuh or AN-juh-nuh) or a heart attack. (Angina is chest pain or discomfort.) Obesity also can lead to heart failure. This is a serious condition in which your heart can't pump enough blood to meet your body's needs. High Blood Pressure Blood pressure is the force of blood pushing against the walls of the arteries as theheart pumps blood. If this pressure rises and stays high over time, it can damage the body in many ways. Your chances of having high blood pressure are greater if you're overweight or obese. Stroke Being overweight or obese can lead to a buildup of plaque in your arteries. Eventually, an area of plaque can rupture, causing a blood clot to form. If the clot is close to your brain, it can block the flow of blood and oxygen to your brain and cause a stroke. The risk of having a stroke rises as BMI increases. Type 2 Diabetes Diabetes is a disease in which the body's blood glucose, or blood sugar, level is too high. Normally, the body breaks down food into glucose and then carries it to cells throughout the body. The cells use a hormone called insulin to turn the glucose into energy. In type 2 diabetes, the body's cells don't use insulin properly. At first, the body reacts by making more insulin. Over time, however, the body can't make enough insulin to control its blood sugar level. Diabetes is a leading cause of early death, CHD, stroke, kidney disease, and blindness. Most people who have type 2 diabetes are overweight. Abnormal Blood Fats If you're overweight or obese, you're at increased risk of having abnormal levels of blood fats. These include high levels of triglycerides and LDL ("bad") cholesterol and low levels of HDL ("good") cholesterol. Abnormal levels of these blood fats are a risk factor for CHD. For more information about triglycerides and LDL and HDL cholesterol, go to the Health Topics High Blood Cholesterol article. Metabolic Syndrome Metabolic syndrome is the name for a group of risk factors that raises your risk for heart disease and other health problems, such as diabetes and stroke. You can develop any one of these risk factors by itself, but they tend to occur together. A diagnosis of metabolic syndrome is made if you have at least three of the following risk factors: A large waistline. This is called abdominal obesity or "having an apple shape." Having extra fat in the waist area is a greater risk factor for CHD than having extra fat in other parts of the body, such as on the hips. A higher than normal triglyceride level (or you're on medicine to treat high triglycerides). A lower than normal HDL cholesterol level (or you're on medicine to treat low HDL cholesterol). Higher than normal blood pressure (or you're on medicine to treat high blood pressure). Higher than normal fasting blood sugar (or you're on medicine to treat diabetes). Cancer Being overweight or obese raises your risk for colon, breast, endometrial, and gallbladder cancers. Osteoarthritis Osteoarthritis is a common joint problem of the knees, hips, and lower back. The condition occurs if the tissue that protects the joints wears away. Extra weight can put more pressure and wear on joints, causing pain. Sleep Apnea Sleep apnea is a common disorder in which you have one or more pauses in breathing or shallow breaths while you sleep. A person who has sleep apnea may have more fat stored around the neck. This can narrow the airway, making it hard to breathe. Obesity Hypoventilation Syndrome Obesity hypoventilation syndrome (OHS) is a breathing disorder that affects some obese people. In OHS, poor breathing results in too much carbon dioxide (hypoventilation) and too little oxygen in the blood (hypoxemia). OHS can lead to serious health problems and may even cause death. Reproductive Problems Obesity can cause menstrual issues and infertility in women. Gallstones Gallstones are hard pieces of stone-like material that form in the gallbladder. They're mostly made of cholesterol. Gallstones can cause stomach or back pain. People who are overweight or obese are at increased risk of having gallstones. Also, being overweight may result in an enlarged gallbladder that doesn't work well. Overweight and Obesity-Related Health Problems in Children and Teens Overweight and obesity also increase the health risks for children and teens. Type2 diabetes once was rare in American children, but an increasing number of children are developing the disease. Also, overweight children are more likely to become overweight or obese as adults, with the same disease risks.
Who is at risk for Overweight and Obesity? ?
Overweight and obesity affect Americans of all ages, sexes, and racial/ethnic groups. This serious health problem has been growing over the last 30 years. Adults According to the National Health and Nutrition Examination Survey (NHANES) 20092010, almost 70 percent of Americans are overweight or obese. The survey also shows differences in overweight and obesity among racial/ethnic groups. In women, overweight and obesity are highest among non-Hispanic Black women (about 82percent), compared with about 76 percent for Hispanic women and 64 percent for non-Hispanic White women. In men, overweight and obesity are highest among Hispanic men (about 82percent), compared with about 74 percent for non-Hispanic White men and about 70 percent for non-Hispanic Black men. Children and Teens Children also have become heavier. In the past 30 years, obesity has tripled among school-aged children and teens. According to NHANES 20092010, about 1 in 6 American children ages 219 are obese. The survey also suggests that overweight and obesity are having a greater effect on minority groups, including Blacks and Hispanics.
What are the symptoms of Overweight and Obesity ?
Weight gain usually happens over time. Most people know when they've gained weight. Some of the signs of overweight or obesity include: Clothes feeling tight and needing a larger size. The scale showing that you've gained weight. Having extra fat around the waist. A higher than normal body mass index and waist circumference. (For more information, go to "How Are Overweight and Obesity Diagnosed?")
How to diagnose Overweight and Obesity ?
The most common way to find out whether you're overweight or obese is to figure out your body mass index (BMI). BMI is an estimate of body fat, and it's a good gauge of your risk for diseases that occur with more body fat. BMI is calculated from your height and weight. You can use the chart below or the National Heart, Lung, and Blood Institute's (NHLBI's) online BMI calculator to figure out your BMI. Or, you health care provider can measure your BMI. Body Mass Index for Adults Use this table to learn your BMI. First, find your height on the far left column. Next, move across the row to find your weight. Weight is measured with underwear but no shoes. Once you've found your weight, move to the very top of that column. This number is your BMI. This table offers a sample of BMI measurements. If you don't see your height and/or weight listed on this table, go the NHLBI's complete Body Mass Index Table. What Does Body Mass Index Mean? Although BMI can be used for most men and women, it does have some limits. It may overestimate body fat in athletes and others who have a muscular build. BMI also may underestimate body fat in older people and others who have lost muscle. Body Mass Index for Children and Teens Overweight are obesity are defined differently for children and teens than for adults. Children are still growing, and boys and girls mature at different rates. BMIs for children and teens compare their heights and weights against growth charts that take age and sex into account. This is called BMI-for-age percentile. A child or teen's BMI-for-age percentile shows how his or her BMI compares with other boys and girls of the same age. For more information about BMI-for-age and growth charts for children, go to the Centers for Disease Control and Prevention's BMI-for-age calculator. What Does the BMI-for-Age Percentile Mean? Waist Circumference Health care professionals also may take your waist measurement. This helps screen for the possible health risks related to overweight and obesity in adults. If you have abdominal obesity and most of your fat is around your waist rather than at your hips, you're at increased risk for coronary heart disease and type 2 diabetes. The risk goes up with a waist size that's greater than 35 inches for women or greater than 40inches for men. You also can measure your waist size. To do so correctly, stand and place a tape measure around your middle, just above your hipbones. Measure your waist just after you breathe out. Specialists Involved A primary care doctor (or pediatrician for children and teens) will assess your BMI, waist measurement, and overall health risk. If you're overweight or obese, or if you have a large waist size, your doctor should explain the health risks and find out whether you're interested and willing to lose weight. If you are, you and your doctor can work together to create a treatment plan. The plan may include weight-loss goals and treatment options that are realistic for you. Your doctor may send you to other health care specialists if you need expert care. These specialists may include: An endocrinologist if you need to be treated for type 2 diabetes or a hormone problem, such as an underactive thyroid. A registered dietitian or nutritionist to work with you on ways to change your eating habits. An exercise physiologist or trainer to figure out your level of fitness and show you how to do physical activities suitable for you. A bariatric surgeon if weight-loss surgery is an option for you. A psychiatrist, psychologist, or clinical social worker to help treat depression or stress.
What are the treatments for Overweight and Obesity ?
Successful weight-loss treatments include setting goals and making lifestyle changes, such as eating fewer calories and being physically active. Medicines and weight-loss surgery also are options for some people if lifestyle changes aren't enough. Set Realistic Goals Setting realistic weight-loss goals is an important first step to losing weight. For Adults Try to lose 5 to 10 percent of your current weight over 6 months. This will lower your risk for coronary heart disease (CHD) and other conditions. The best way to lose weight is slowly. A weight loss of 1 to 2 pounds a week is do-able, safe, and will help you keep off the weight. It also will give you the time to make new, healthy lifestyle changes. If you've lost 10 percent of your body weight, have kept it off for 6 months, and are still overweight or obese, you may want to consider further weight loss. For Children and Teens If your child is overweight or at risk for overweight or obesity, the goal is to maintain his or her current weight and to focus on eating healthy and being physically active. This should be part of a family effort to make lifestyle changes. If your child is overweight or obese and has a health condition related to overweight or obesity, your doctor may refer you to a pediatric obesity treatment center. Lifestyle Changes Lifestyle changes can help you and your family achieve long-term weight-loss success. Example of lifestyle changes include: Focusing on balancing energy IN (calories from food and drinks) with energy OUT (physical activity) Following a healthy eating plan Learning how to adopt healthy lifestyle habits Over time, these changes will become part of your everyday life. Calories Cutting back on calories (energy IN) will help you lose weight. To lose 1 to 2pounds a week, adults should cut back their calorie intake by 500 to 1,000calories a day. In general, having 1,000 to 1,200 calories a day will help most women lose weight safely. In general, having 1,200 to 1,600 calories a day will help most men lose weight safely. This calorie range also is suitable for women who weigh 165pounds or more or who exercise routinely. These calorie levels are a guide and may need to be adjusted. If you eat 1,600calories a day but don't lose weight, then you may want to cut back to 1,200calories. If you're hungry on either diet, then you may want to add 100 to 200calories a day. Very low-calorie diets with fewer than 800 calories a day shouldn't be used unless your doctor is monitoring you. For overweight children and teens, it's important to slow the rate of weight gain. However, reduced-calorie diets aren't advised unless you talk with a health care provider. Healthy Eating Plan A healthy eating plan gives your body the nutrients it needs every day. It has enough calories for good health, but not so many that you gain weight. A healthy eating plan is low in saturated fat, trans fat, cholesterol, sodium (salt), and added sugar. Following a healthy eating plan will lower your risk for heart disease and other conditions. Healthy foods include: Fat-free and low-fat dairy products, such as low-fat yogurt, cheese, and milk. Protein foods, such as lean meat, fish, poultry without skin, beans, and peas. Whole-grain foods, such as whole-wheat bread, oatmeal, and brown rice. Other grain foods include pasta, cereal, bagels, bread, tortillas, couscous, and crackers. Fruits, which can be fresh, canned, frozen, or dried. Vegetables, which can be fresh, canned (without salt), frozen, or dried. Canola and olive oils, and soft margarines made from these oils, are heart healthy. However, you should use them in small amounts because they're high in calories. You also can include unsalted nuts, like walnuts and almonds, in your diet as long as you limit the amount you eat (nuts also are high in calories). The National Heart, Lung, and Blood Institute's "Aim for a Healthy Weight" patient booklet provides more information about following a healthy eating plan. Foods to limit. Foods that are high in saturated and trans fats and cholesterol raise blood cholesterol levels and also might be high in calories. Fats and cholesterol raise your risk for heart disease, so they should be limited. Saturated fat is found mainly in: Fatty cuts of meat, such as ground beef, sausage, and processed meats (for example, bologna, hot dogs, and deli meats) Poultry with the skin High-fat dairy products like whole-milk cheeses, whole milk, cream, butter, and ice cream Lard, coconut, and palm oils, which are found in many processed foods Trans fat is found mainly in: Foods with partially hydrogenated oils, such as many hard margarines and shortening Baked products and snack foods, such as crackers, cookies, doughnuts, and breads Foods fried in hydrogenated shortening, such as french fries and chicken Cholesterol mainly is found in: Egg yolks Organ meats, such as liver Shrimp Whole milk or whole-milk products, such as butter, cream, and cheese Limiting foods and drinks with added sugars, like high-fructose corn syrup, is important. Added sugars will give you extra calories without nutrients like vitamins and minerals. Added sugars are found in many desserts, canned fruit packed in syrup, fruit drinks, and nondiet drinks. Check the list of ingredients on food packages for added sugars like high-fructose corn syrup. Drinks that contain alcohol also will add calories, so it's a good idea to limit your alcohol intake. Portion size. A portion is the amount of food that you choose to eat for a meal or snack. It's different from a serving, which is a measured amount of food and is noted on the Nutrition Facts label on food packages. Anyone who has eaten out lately is likely to notice how big the portions are. In fact, over the past 40 years, portion sizes have grown significantly. These growing portion sizes have changed what we think of as a normal portion. Cutting back on portion size is a good way to eat fewer calories and balance your energy IN. Food weight. Studies have shown that we all tend to eat a constant "weight" of food. Ounce for ounce, our food intake is fairly consistent. Knowing this, you can lose weight if you eat foods that are lower in calories and fat for a given amount of food. For example, replacing a full-fat food product that weighs 2 ounces with a low-fat product that weighs the same helps you cut back on calories. Another helpful practice is to eat foods that contain a lot of water, such as vegetables, fruits, and soups. Physical Activity Being physically active and eating fewer calories will help you lose weight and keep weight off over time. Physical activity also will benefit you in other ways. It will: Lower your risk for heart disease, heart attack, diabetes, and cancers (such as breast, uterine, and colon cancers) Strengthen your heart and help your lungs work better Strengthen your muscles and keep your joints in good condition Slow bone loss Give you more energy Help you relax and better cope with stress Allow you to fall asleep more quickly and sleep more soundly Give you an enjoyable way to share time with friends and family The four main types of physical activity are aerobic, muscle-strengthening, bone strengthening, and stretching. You can do physical activity with light, moderate, or vigorous intensity. The level of intensity depends on how hard you have to work to do the activity. People vary in the amount of physical activity they need to control their weight. Many people can maintain their weight by doing 150 to 300 minutes (2 hours and 30 minutes to 5 hours) of moderate-intensity activity per week, such as brisk walking. People who want to lose a large amount of weight (more than 5 percent of their body weight) may need to do more than 300 minutes of moderate-intensity activity per week. This also may be true for people who want to keep off weight that they've lost. You don't have to do the activity all at once. You can break it up into short periods of at least 10 minutes each. If you have a heart problem or chronic disease, such as heart disease, diabetes, or high blood pressure, talk with your doctor about what types of physical activity are safe for you. You also should talk with your doctor about safe physical activities if you have symptoms such as chest pain or dizziness. Children should get at least 60 minutes or more of physical activity every day. Most physical activity should be moderate-intensity aerobic activity. Activity should vary and be a good fit for the child's age and physical development. Many people lead inactive lives and might not be motivated to do more physical activity. When starting a physical activity program, some people may need help and supervision to avoid injury. If you're obese, or if you haven't been active in the past, start physical activity slowly and build up the intensity a little at a time. When starting out, one way to be active is to do more everyday activities, such as taking the stairs instead of the elevator and doing household chores and yard work. The next step is to start walking, biking, or swimming at a slow pace, and then build up the amount of time you exercise or the intensity level of the activity. To lose weight and gain better health, it's important to get moderate-intensity physical activity. Choose activities that you enjoy and that fit into your daily life. A daily, brisk walk is an easy way to be more active and improve your health. Use a pedometer to count your daily steps and keep track of how much you're walking. Try to increase the number of steps you take each day. Other examples of moderate-intensity physical activity include dancing, gardening, and water aerobics. For greater health benefits, try to step up your level of activity or the length of time you're active. For example, start walking for 10 to 15 minutes three times a week, and then build up to brisk walking for 60 minutes, 5 days a week. For more information about physical activity, go to the Department of Health and Human Services "2008 Physical Activity Guidelines for Americans" and the Health Topics Physical Activity and Your Heart article. Behavioral Changes Changing your behaviors or habits related to food and physical activity is important for losing weight. The first step is to understand which habits lead you to overeat or have an inactive lifestyle. The next step is to change these habits. Below are some simple tips to help you adopt healthier habits. Change your surroundings. You might be more likely to overeat when watching TV, when treats are available at work, or when you're with a certain friend. You also might find it hard to motivate yourself to be physically active. However, you can change these habits. Instead of watching TV, dance to music in your living room or go for a walk. Leave the office break room right after you get a cup of coffee. Bring a change of clothes to work. Head straight to an exercise class on the way home from work. Put a note on your calendar to remind yourself to take a walk or go to your exercise class. Keep a record. A record of your food intake and the amount of physical activity that you do each day will help inspire you. You also can keep track of your weight. For example, when the record shows that you've been meeting your physical activity goals, you'll want to keep it up. A record also is an easy way to track how you're doing, especially if you're working with a registered dietitian or nutritionist. Seek support. Ask for help or encouragement from your friends, family, and health care provider. You can get support in person, through e-mail, or by talking on the phone. You also can join a support group. Reward success. Reward your success for meeting your weight-loss goals or other achievements with something you would like to do, not with food. Choose rewards that you'll enjoy, such as a movie, music CD, an afternoon off from work, a massage, or personal time. Weight-Loss Medicines Weight-loss medicines approved by the Food and Drug Administration (FDA) might be an option for some people. If you're not successful at losing 1 pound a week after 6months of using lifestyle changes, medicines may help. You should only use medicines as part of a program that includes diet, physical activity, and behavioral changes. Weight-loss medicines might be suitable for adults who are obese (a BMI of 30 or greater). People who have BMIs of 27 or greater, and who are at risk for heart disease and other health conditions, also may benefit from weight-loss medicines. Sibutramine (Meridia) As of October 2010, the weight-loss medicine sibutramine (Meridia) was taken off the market in the United States. Research showed that the medicine may raise the risk of heart attack and stroke. Orlistat (Xenical and Alli) Orlistat (Xenical) causes a weight loss between 5 and 10 pounds, although some people lose more weight. Most of the weight loss occurs within the first 6 months of taking the medicine. People taking Xenical need regular checkups with their doctors, especially during the first year of taking the medicine. During checkups, your doctor will check your weight, blood pressure, and pulse and may recommend other tests. He or she also will talk with you about any medicine side effects and answer your questions. The FDA also has approved Alli, an over-the-counter (OTC) weight-loss aid for adults. Alli is the lower dose form of orlistat. Alli is meant to be used along with a reduced-calorie, low-fat diet and physical activity. In studies, most people taking Alli lost 5 to 10pounds over 6 months. Both Xenical and Alli reduce the absorption of fats, fat calories, and vitamins A, D, E, and K to promote weight loss. Both medicines also can cause mild side effects, such as oily and loose stools. Although rare, some reports of liver disease have occurred with the use of orlistat. More research is needed to find out whether the medicine plays a role in causing liver disease. Talk with your doctor if youre considering using Xenical or Alli to lose weight. He or she can discuss the risks and benefits with you. You also should talk with your doctor before starting orlistat if youre taking blood-thinning medicines or being treated for diabetes or thyroid disease. Also, ask your doctor whether you should take a multivitamin due to the possible loss of some vitamins. Lorcaserin Hydrochloride (Belviq) and Qsymia In July 2012, the FDA approved two new medicines for chronic (ongoing) weight management. Lorcaserin hydrochloride (Belviq) and Qsymia are approved for adults who have a BMI of 30 or greater. (Qsymia is a combination of two FDA-approved medicines: phentermine and topiramate.) These medicines also are approved for adults with a BMI of 27 or greater who have at least one weight-related condition, such as high blood pressure, type 2 diabetes, or high blood cholesterol. Both medicines are meant to be used along with a reduced-calorie diet and physical activity. Other Medicines Some prescription medicines are used for weight loss, but aren't FDA-approved for treating obesity. They include: Medicines to treat depression. Some medicines for depression cause an initial weight loss and then a regain of weight while taking the medicine. Medicines to treat seizures. Two medicines used for seizures, topiramate and zonisamide, have been shown to cause weight loss. These medicines are being studied to see whether they will be useful in treating obesity. Medicines to treat diabetes. Metformin may cause small amounts of weight loss in people who have obesity and diabetes. It's not known how this medicine causes weight loss, but it has been shown to reduce hunger and food intake. Over-the-Counter Products Some OTC products claim to promote weight loss. The FDA doesn't regulate these products because they're considered dietary supplements, not medicines. However, many of these products have serious side effects and generally aren't recommended. Some of these OTC products include: Ephedra (also called ma huang). Ephedra comes from plants and has been sold as a dietary supplement. The active ingredient in the plant is called ephedrine. Ephedra can cause short-term weight loss, but it also has serious side effects. It causes high blood pressure and stresses the heart. In 2004, the FDA banned the sale of dietary supplements containing ephedra in the United States. Chromium. This is a mineral that's sold as a dietary supplement to reduce body fat. While studies haven't found any weight-loss benefit from chromium, there are few serious side effects from taking it. Diuretics and herbal laxatives. These products cause you to lose water weight, not fat. They also can lower your body's potassium levels, which may cause heart and muscle problems. Hoodia. Hoodia is a cactus that's native to Africa. It's sold in pill form as an appetite suppressant. However, no firm evidence shows that hoodia works. No large-scale research has been done on humans to show whether hoodia is effective or safe. Weight-Loss Surgery Weight-loss surgery might be an option for people who have extreme obesity (BMI of 40 or more) when other treatments have failed. Weight-loss surgery also is an option for people who have a BMI of 35 or more and life-threatening conditions, such as: Severe sleep apnea (a condition in which you have one or more pauses in breathing or shallow breaths while you sleep) Obesity-related cardiomyopathy (KAR-de-o-mi-OP-ah-thee; diseases of the heart muscle) Severe type 2 diabetes Types of Weight-Loss Surgery Two common weight-loss surgeries include banded gastroplasty and Roux-en-Y gastric bypass. For gastroplasty, a band or staples are used to create a small pouch at the top of your stomach. This surgery limits the amount of food and liquids the stomach can hold. For gastric bypass, a small stomach pouch is created with a bypass around part of the small intestine where most of the calories you eat are absorbed. This surgery limits food intake and reduces the calories your body absorbs. Weight-loss surgery can improve your health and weight. However, the surgery can be risky, depending on your overall health. Gastroplasty has few long-term side effects, but you must limit your food intake dramatically. Gastric bypass has more side effects. They include nausea (feeling sick to your stomach), bloating, diarrhea, and faintness. These side effects are all part of a condition called dumping syndrome. After gastric bypass, you may need multivitamins and minerals to prevent nutrient deficiencies. Lifelong medical followup is needed after both surgeries. Your doctor also may recommend a program both before and after surgery to help you with diet, physical activity, and coping skills. If you think you would benefit from weight-loss surgery, talk with your doctor. Ask whether you're a candidate for the surgery and discuss the risks, benefits, and what to expect. Weight-Loss Maintenance Maintaining your weight loss over time can be a challenge. For adults, weight loss is a success if you lose at least 10 percent of your initial weight and you don't regain more than 6 or 7 pounds in 2 years. You also must keep a lower waist circumference (at least 2 inches lower than your waist circumference before you lost weight). After 6 months of keeping off the weight, you can think about losing more if: You've already lost 5 to 10 percent of your body weight You're still overweight or obese The key to losing more weight or maintaining your weight loss is to continue with lifestyle changes. Adopt these changes as a new way of life. If you want to lose more weight, you may need to eat fewer calories and increase your activity level. For example, if you eat 1,600 calories a day but don't lose weight, you may want to cut back to 1,200 calories. It's also important to make physical activity part of your normal daily routine.
How to prevent Overweight and Obesity ?
Following a healthy lifestyle can help you prevent overweight and obesity. Many lifestyle habits begin during childhood. Thus, parents and families should encourage their children to make healthy choices, such as following a healthy diet and being physically active. Make following a healthy lifestyle a family goal. For example: Follow a healthy eating plan. Make healthy food choices, keep your calorie needs and your family's calorie needs in mind, and focus on the balance of energy IN and energy OUT. Focus on portion size. Watch the portion sizes in fast food and other restaurants. The portions served often are enough for two or three people. Children's portion sizes should be smaller than those for adults. Cutting back on portion size will help you balance energy IN and energy OUT. Be active. Make personal and family time active. Find activities that everyone will enjoy. For example, go for a brisk walk, bike or rollerblade, or train together for a walk or run. Reduce screen time. Limit the use of TVs, computers, DVDs, and videogames because they limit time for physical activity. Health experts recommend 2hours or less a day of screen time that's not work- or homework-related. Keep track of your weight, body mass index, and waist circumference. Also, keep track of your children's growth. Led by the National Heart, Lung, and Blood Institute, four Institutes from the National Institutes of Health have come together to promote We Can!Ways to Enhance Children's Activity & Nutrition. We Can! is a national education program designed for parents and caregivers to help children 8 to 13 years old maintain a healthy weight. The evidence-based program offers parents and families tips and fun activities to encourage healthy eating, increase physical activity, and reduce time spent being inactive. Currently, more than 140 community groups around the country are participating in We Can! programs for parents and youth. These community groups include hospitals, health departments, clinics, faith-based organizations, YMCAs, schools, and more. ____________ We Can! is a registered trademark of the U.S. Department of Health and Human Services.
What is (are) Stroke ?
A stroke occurs if the flow of oxygen-rich blood to a portion of the brain is blocked. Without oxygen, brain cells start to die after a few minutes. Sudden bleeding in the brain also can cause a stroke if it damages brain cells. If brain cells die or are damaged because of a stroke, symptoms occur in the parts of the body that these brain cells control. Examples of stroke symptoms include sudden weakness; paralysis or numbness of the face, arms, or legs (paralysis is an inability to move); trouble speaking or understanding speech; and trouble seeing. A stroke is a serious medical condition that requires emergency care. A stroke can cause lasting brain damage, long-term disability, or even death. If you think you or someone else is having a stroke, call 911 right away. Do not drive to the hospital or let someone else drive you. Call an ambulance so that medical personnel can begin life-saving treatment on the way to the emergency room. During a stroke, every minute counts. Overview The two main types of stroke are ischemic (is-KE-mik) and hemorrhagic (hem-ah-RAJ-ik). Ischemic is the more common type of stroke. An ischemic stroke occurs if an artery that supplies oxygen-rich blood to the brain becomes blocked. Blood clots often cause the blockages that lead to ischemic strokes. A hemorrhagic stroke occurs if an artery in the brain leaks blood or ruptures (breaks open). The pressure from the leaked blood damages brain cells. High blood pressure and aneurysms (AN-u-risms) are examples of conditions that can cause hemorrhagic strokes. (Aneurysms are balloon-like bulges in an artery that can stretch and burst.) Another condition thats similar to a stroke is a transient ischemic attack, also called a TIA or mini-stroke. A TIA occurs if blood flow to a portion of the brain is blocked only for a short time. Thus, damage to the brain cells isnt permanent (lasting). Like ischemic strokes, TIAs often are caused by blood clots. Although TIAs are not full-blown strokes, they greatly increase the risk of having a stroke. If you have a TIA, its important for your doctor to find the cause so you can take steps to prevent a stroke. Both strokes and TIAs require emergency care. Outlook Stroke is a leading cause of death in the United States. Many factors can raise your risk of having a stroke. Talk with your doctor about how you can control these risk factors and help prevent a stroke. If you have a stroke, prompt treatment can reduce damage to your brain and help you avoid lasting disabilities. Prompt treatment also may help prevent another stroke. Researchers continue to study the causes and risk factors for stroke. Theyre also finding new and better treatments and new ways to help the brain repair itself after a stroke.
What causes Stroke ?
Ischemic Stroke and Transient Ischemic Attack An ischemic stroke or transient ischemic attack (TIA) occurs if an artery that supplies oxygen-rich blood to the brain becomes blocked. Many medical conditions can increase the risk of ischemic stroke or TIA. For example, atherosclerosis (ath-er-o-skler-O-sis) is a disease in which a fatty substance called plaque builds up on the inner walls of the arteries. Plaque hardens and narrows the arteries, which limits the flow of blood to tissues and organs (such as the heart and brain). Plaque in an artery can crack or rupture (break open). Blood platelets (PLATE-lets), which are disc-shaped cell fragments, stick to the site of the plaque injury and clump together to form blood clots. These clots can partly or fully block an artery. Plaque can build up in any artery in the body, including arteries in the heart, brain, and neck. The two main arteries on each side of the neck are called the carotid (ka-ROT-id) arteries. These arteries supply oxygen-rich blood to the brain, face, scalp, and neck. When plaque builds up in the carotid arteries, the condition is called carotid artery disease. Carotid artery disease causes many of the ischemic strokes and TIAs that occur in the United States. An embolic stroke (a type of ischemic stroke) or TIA also can occur if a blood clot or piece of plaque breaks away from the wall of an artery. The clot or plaque can travel through the bloodstream and get stuck in one of the brains arteries. This stops blood flow through the artery and damages brain cells. Heart conditions and blood disorders also can cause blood clots that can lead to a stroke or TIA. For example, atrial fibrillation (A-tre-al fi-bri-LA-shun), or AF, is a common cause of embolic stroke. In AF, the upper chambers of the heart contract in a very fast and irregular way. As a result, some blood pools in the heart. The pooling increases the risk of blood clots forming in the heart chambers. An ischemic stroke or TIA also can occur because of lesions caused by atherosclerosis. These lesions may form in the small arteries of the brain, and they can block blood flow to the brain. Hemorrhagic Stroke Sudden bleeding in the brain can cause a hemorrhagic stroke. The bleeding causes swelling of the brain and increased pressure in the skull. The swelling and pressure damage brain cells and tissues. Examples of conditions that can cause a hemorrhagic stroke include high blood pressure, aneurysms, and arteriovenous (ar-TEER-e-o-VE-nus) malformations (AVMs). "Blood pressure" is the force of blood pushing against the walls of the arteries as the heart pumps blood. If blood pressure rises and stays high over time, it can damage the body in many ways. Aneurysms are balloon-like bulges in an artery that can stretch and burst. AVMs are tangles of faulty arteries and veins that can rupture within the brain. High blood pressure can increase the risk of hemorrhagic stroke in people who have aneurysms or AVMs.
Who is at risk for Stroke? ?
Certain traits, conditions, and habits can raise your risk of having a stroke or transient ischemic attack (TIA). These traits, conditions, and habits are known as risk factors. The more risk factors you have, the more likely you are to have a stroke. You can treat or control some risk factors, such as high blood pressure and smoking. Other risk factors, such as age and gender, you cant control. The major risk factors for stroke include: High blood pressure. High blood pressure is the main risk factor for stroke. Blood pressure is considered high if it stays at or above 140/90 millimeters of mercury (mmHg) over time. If you have diabetes or chronic kidney disease, high blood pressure is defined as 130/80 mmHg or higher. Diabetes. Diabetes is a disease in which the blood sugar level is high because the body doesnt make enough insulin or doesnt use its insulin properly. Insulin is a hormone that helps move blood sugar into cells where its used for energy. Heart diseases.Coronary heart disease,cardiomyopathy,heart failure, andatrial fibrillationcan cause blood clots that can lead to a stroke. Smoking. Smoking can damage blood vessels and raise blood pressure. Smoking also may reduce the amount of oxygen that reaches your bodys tissues. Exposure to secondhand smoke also can damage the blood vessels. Age and gender. Your risk of stroke increases as you get older. At younger ages, men are more likely than women to have strokes. However, women are more likely to die from strokes. Women who take birth control pills also are at slightly higher risk of stroke. Race and ethnicity. Strokes occur more often in African American, Alaska Native, and American Indian adults than in white, Hispanic, or Asian American adults. Personal or family history of stroke or TIA. If youve had a stroke, youre at higher risk for another one. Your risk of having a repeat stroke is the highest right after a stroke. A TIA also increases your risk of having a stroke, as does having a family history of stroke. Brainaneurysmsor arteriovenous malformations (AVMs). Aneurysms are balloon-like bulges in an artery that can stretch and burst. AVMs are tangles of faulty arteries and veins that can rupture (break open) within the brain. AVMs may be present at birth, but often arent diagnosed until they rupture. Other risk factors for stroke, many of which of you can control, include: Alcohol and illegal drug use, including cocaine, amphetamines, and other drugs Certain medical conditions, such as sickle cell disease, vasculitis (inflammation of the blood vessels), and bleeding disorders Lack of physical activity Overweight and Obesity Stress and depression Unhealthy cholesterol levels Unhealthy diet Use of nonsteroidal anti-inflammatory drugs (NSAIDs), but not aspirin, may increase the risk of heart attack or stroke, particularly in patients who have had a heart attack or cardiac bypass surgery. The risk may increase the longer NSAIDs are used. Common NSAIDs include ibuprofen and naproxen. Following a healthy lifestyle can lower the risk of stroke. Some people also may need to take medicines to lower their risk. Sometimes strokes can occur in people who dont have any known risk factors.
What are the symptoms of Stroke ?
The signs and symptoms of a stroke often develop quickly. However, they can develop over hours or even days. The type of symptoms depends on the type of stroke and the area of the brain thats affected. How long symptoms last and how severe they are vary among different people. Signs and symptoms of a stroke may include: Sudden weakness Paralysis (an inability to move) or numbness of the face, arms, or legs, especially on one side of the body Confusion Trouble speaking or understanding speech Trouble seeing in one or both eyes Problems breathing Dizziness, trouble walking, loss of balance or coordination, and unexplained falls Loss of consciousness Sudden and severe headache A transient ischemic attack (TIA) has the same signs and symptoms as a stroke. However, TIA symptoms usually last less than 12 hours (although they may last up to 24 hours). A TIA may occur only once in a persons lifetime or more often. At first, it may not be possible to tell whether someone is having a TIA or stroke. All stroke-like symptoms require medical care. If you think you or someone else is having a TIA or stroke, call 911 right away. Do not drive to the hospital or let someone else drive you. Call an ambulance so that medical personnel can begin life-saving treatment on the way to the emergency room. During a stroke, every minute counts. Stroke Complications After youve had a stroke, you may develop other complications, such as: Blood clots and muscle weakness. Being immobile (unable to move around) for a long time can raise your risk of developing blood clots in the deep veins of the legs. Being immobile also can lead to muscle weakness and decreased muscle flexibility. Problems swallowing and pneumonia. If a stroke affects the muscles used for swallowing, you may have a hard time eating or drinking. You also may be at risk of inhaling food or drink into your lungs. If this happens, you may develop pneumonia. Loss of bladder control. Some strokes affect the muscles used to urinate. You may need a urinary catheter (a tube placed into the bladder) until you can urinate on your own. Use of these catheters can lead to urinary tract infections. Loss of bowel control or constipation also may occur after a stroke.
How to diagnose Stroke ?
Your doctor will diagnose a stroke based on your signs and symptoms, your medical history, a physical exam, and test results. Your doctor will want to find out the type of stroke youve had, its cause, the part of the brain that's affected, and whether you have bleeding in the brain. If your doctor thinks youve had a transient ischemic attack (TIA), he or she will look for its cause to help prevent a future stroke. Medical History and Physical Exam Your doctor will ask you or a family member about your risk factors for stroke. Examples of risk factors include high blood pressure, smoking, heart disease, and a personal or family history of stroke. Your doctor also will ask about your signs and symptoms and when they began. During the physical exam, your doctor will check your mental alertness and your coordination and balance. He or she will check for numbness or weakness in your face, arms, and legs; confusion; and trouble speaking and seeing clearly. Your doctor will look for signs of carotid artery disease, a common cause of ischemic stroke. He or she will listen to your carotid arteries with a stethoscope. A whooshing sound called a bruit (broo-E) may suggest changed or reduced blood flow due to plaque buildup in the carotid arteries. Diagnostic Tests and Procedures Your doctor may recommend one or more of the following tests to diagnose a stroke or TIA. Brain Computed Tomography A brain computed tomography (to-MOG-rah-fee) scan, or brain CT scan, is a painless test that uses x rays to take clear, detailed pictures of your brain. This test often is done right after a stroke is suspected. A brain CT scan can show bleeding in the brain or damage to the brain cells from a stroke. The test also can show other brain conditions that may be causing your symptoms. Magnetic Resonance Imaging Magnetic resonance imaging (MRI) uses magnets and radio waves to create pictures of the organs and structures in your body. This test can detect changes in brain tissue and damage to brain cells from a stroke. An MRI may be used instead of, or in addition to, a CT scan to diagnose a stroke. Computed Tomography Arteriogram and Magnetic Resonance Arteriogram A CT arteriogram (CTA) and magnetic resonance arteriogram (MRA) can show the large blood vessels in the brain. These tests may give your doctor more information about the site of a blood clot and the flow of blood through your brain. Carotid Ultrasound Carotid ultrasound is a painless and harmless test that uses sound waves to create pictures of the insides of your carotid arteries. These arteries supply oxygen-rich blood to your brain. Carotid ultrasound shows whether plaque has narrowed or blocked your carotid arteries. Your carotid ultrasound test may include a Doppler ultrasound. Doppler ultrasound is a special test that shows the speed and direction of blood moving through your blood vessels. Carotid Angiography Carotid angiography (an-jee-OG-ra-fee) is a test that uses dye and special x rays to show the insides of your carotid arteries. For this test, a small tube called a catheter is put into an artery, usually in the groin (upper thigh). The tube is then moved up into one of your carotid arteries. Your doctor will inject a substance (called contrast dye) into the carotid artery. The dye helps make the artery visible on x-ray pictures. Heart Tests EKG (Electrocardiogram) An EKG is a simple, painless test that records the heart's electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through each part of the heart. An EKG can help detect heart problems that may have led to a stroke. For example, the test can help diagnose atrial fibrillation or a previous heart attack. Echocardiography Echocardiography (EK-o-kar-de-OG-ra-fee), or echo, is a painless test that uses sound waves to create pictures of your heart. The test gives information about the size and shape of your heart and how well your heart's chambers and valves are working. Echo can detect possible blood clots inside the heart and problems with the aorta. The aorta is the main artery that carries oxygen-rich blood from your heart to all parts of your body. Blood Tests Your doctor also may use blood tests to help diagnose a stroke. A blood glucose test measures the amount of glucose (sugar) in your blood. Low blood glucose levels may cause symptoms similar to those of a stroke. A platelet count measures the number of platelets in your blood. Blood platelets are cell fragments that help your blood clot. Abnormal platelet levels may be a sign of a bleeding disorder (not enough clotting) or a thrombotic disorder (too much clotting). Your doctor also may recommend blood tests to measure how long it takes for your blood to clot. Two tests that may be used are called PT and PTT tests. These tests show whether your blood is clotting normally.
What are the treatments for Stroke ?
Treatment for a stroke depends on whether it is ischemic or hemorrhagic. Treatment for a transient ischemic attack (TIA) depends on its cause, how much time has passed since symptoms began, and whether you have other medical conditions. Strokes and TIAs are medical emergencies. If you have stroke symptoms, call 911 right away. Do not drive to the hospital or let someone else drive you. Call an ambulance so that medical personnel can begin lifesaving treatment on the way to the emergency room. During a stroke, every minute counts. Once you receive immediate treatment, your doctor will try to treat your stroke risk factors and prevent complications by recommending heart-healthy lifestyle changes. Treating an Ischemic Stroke or Transient Ischemic Attack An ischemic stroke or TIA occurs if an artery that supplies oxygen-rich blood to the brain becomes blocked. Often, blood clots cause the blockages that lead to ischemic strokes and TIAs. Treatment for an ischemic stroke or TIA may include medicines and medical procedures. Medicines If you have a stroke caused by a blood clot, you may be given a clot-dissolving, or clot-busting, medication called tissue plasminogen activator (tPA). A doctor will inject tPA into a vein in your arm. This type of medication must be given within 4hours of symptom onset. Ideally, it should be given as soon as possible. The sooner treatment begins, the better your chances of recovery. Thus, its important to know the signs and symptoms of a stroke and to call 911 right away for emergency care. If you cant have tPA for medical reasons, your doctor may give you antiplatelet medicine that helps stop platelets from clumping together to form blood clots or anticoagulant medicine (blood thinner) that keeps existing blood clots from getting larger. Two common medicines are aspirin and clopidogrel. Medical Procedures If you have carotid artery disease, your doctor may recommend a carotid endarterectomy or carotid arteryangioplasty. Both procedures open blocked carotid arteries. Researchers are testing other treatments for ischemic stroke, such as intra-arterial thrombolysis and mechanical clot removal in cerebral ischemia (MERCI). In intra-arterial thrombolysis, a long flexible tube called a catheter is put into your groin (upper thigh) and threaded to the tiny arteries of the brain. Your doctor can deliver medicine through this catheter to break up a blood clot in the brain. MERCI is a device that can remove blood clots from an artery. During the procedure, a catheter is threaded through a carotid artery to the affected artery in the brain. The device is then used to pull the blood clot out through the catheter. Treating a Hemorrhagic Stroke A hemorrhagic stroke occurs if an artery in the brain leaks blood or ruptures. The first steps in treating a hemorrhagic stroke are to find the cause of bleeding in the brain and then control it. Unlike ischemic strokes, hemorrhagic strokes arent treated with antiplatelet medicines and blood thinners because these medicines can make bleeding worse. If youre taking antiplatelet medicines or blood thinners and have a hemorrhagic stroke, youll be taken off the medicine. If high blood pressure is the cause of bleeding in the brain, your doctor may prescribe medicines to lower your blood pressure. This can help prevent further bleeding. Surgery also may be needed to treat a hemorrhagic stroke. The types of surgery used include aneurysm clipping, coil embolization, and arteriovenous malformation (AVM) repair. Aneurysm Clipping and Coil Embolization If an aneurysm (a balloon-like bulge in an artery) is the cause of a stroke, your doctor may recommend aneurysm clipping or coil embolization. Aneurysm clipping is done to block off the aneurysm from the blood vessels in the brain. This surgery helps prevent further leaking of blood from the aneurysm. It also can help prevent the aneurysm from bursting again.During the procedure, a surgeon will make an incision (cut) in the brain and place a tiny clamp at the base of the aneurysm. Youll be given medicine to make you sleep during the surgery. After the surgery, youll need to stay in the hospitals intensive care unit for a few days. Coil embolization is a less complex procedure for treating an aneurysm. The surgeon will insert a tube called a catheter into an artery in the groin. He or she will thread the tube to the site of the aneurysm.Then, a tiny coil will be pushed through the tube and into the aneurysm. The coil will cause a blood clot to form, which will block blood flow through the aneurysm and prevent it from burstingagain.Coil embolization is done in a hospital. Youll be given medicine to make you sleep during thesurgery. Arteriovenous Malformation Repair If an AVM is the cause of a stroke, your doctor may recommend an AVM repair. (An AVM is a tangle of faulty arteries and veins that can rupture within the brain.) AVM repair helps prevent further bleeding in the brain. Doctors use several methods to repair AVMs. These methods include: Injecting a substance into the blood vessels of the AVM to block blood flow Surgery to remove the AVM Using radiation to shrink the blood vessels of the AVM Treating Stroke Risk Factors After initial treatment for a stroke or TIA, your doctor will treat your risk factors. He or she may recommend heart-healthy lifestyle changes to help control your risk factors. Heart-healthy lifestyle changes may include: heart-healthy eating maintaining a healthy weight managing stress physical activity quitting smoking If lifestyle changes arent enough, you may need medicine to control your risk factors. Heart-Healthy Eating Your doctor may recommend heart-healthy eating, which should include: Fat-free or low-fat dairy products, such as skim milk Fish high in omega-3 fatty acids, such as salmon, tuna, and trout, about twice a week Fruits, such as apples, bananas, oranges, pears, and prunes Legumes, such as kidney beans, lentils, chickpeas, black-eyed peas, and lima beans Vegetables, such as broccoli, cabbage, and carrots Whole grains, such as oatmeal, brown rice, and corn tortillas When following a heart-healthy diet, you should avoid eating: A lot of red meat Palm and coconut oils Sugary foods and beverages Two nutrients in your diet make blood cholesterol levels rise: Saturated fatfound mostly in foods that come from animals Trans fat (trans fatty acids)found in foods made with hydrogenated oils and fats, such as stick margarine; baked goods, such as cookies, cakes, and pies; crackers; frostings; and coffee creamers. Some trans fats also occur naturally in animal fats and meats. Saturated fat raises your blood cholesterol more than anything else in your diet. When you follow a heart-healthy eating plan, only 5percent to 6percent of your daily calories should come from saturated fat. Food labels list the amounts of saturated fat. To help you stay on track, here are some examples: 1,200 calories a day 8 grams of saturated fat a day 1,500 calories a day 10 grams of saturated fat a day 1,800 calories a day 12 grams of saturated fat a day 2,000 calories a day 13 grams of saturated fat a day 2,500 calories a day 17 grams of saturated fat a day Not all fats are bad. Monounsaturated and polyunsaturated fats actually help lower blood cholesterol levels. Some sources of monounsaturated and polyunsaturated fats are: Avocados Corn, sunflower, and soybean oils Nuts and seeds, such as walnuts Olive, canola, peanut, safflower, and sesame oils Peanut butter Salmon and trout Tofu Sodium Try to limit the amount of sodium that you eat. This means choosing and preparing foods that are lower in salt and sodium. Try to use low-sodium and no added salt foods and seasonings at the table or while cooking. Food labels tell you what you need to know about choosing foods that are lower in sodium. Try to eat no more than 2,300 milligrams of sodium a day. If you have high blood pressure, you may need to restrict your sodium intake even more. Dietary Approaches to Stop Hypertension Your doctor may recommend the Dietary Approaches to Stop Hypertension (DASH) eating plan if you have high blood pressure. The DASH eating plan focuses on fruits, vegetables, whole grains, and other foods that are heart healthy and low in fat, cholesterol, and sodium and salt. The DASH eating plan is a good heart-healthy eating plan, even for those who dont have high blood pressure. Read more about DASH. Alcohol Try to limit alcohol intake. Too much alcohol can raise your blood pressure and triglyceride levels, a type of fat found in the blood. Alcohol also adds extra calories, which may cause weight gain. Men should have no more than two drinks containing alcohol a day. Women should have no more than one drink containing alcohol a day. One drink is: 12 ounces of beer 5 ounces of wine 1 ounces of liquor Maintaining a Healthy Weight Maintaining a healthy weight is important for overall health and can lower your risk for stroke. Aim for a Healthy Weight by following a heart-healthy eating plan and keeping physically active. Knowing your body mass index (BMI) helps you find out if youre a healthy weight in relation to your height and gives an estimate of your total body fat. To figure out your BMI, check out the National Heart, Lung, and Blood Institutes (NHLBI) online BMI calculator or talk to your doctor. A BMI: Below 18.5 is a sign that you are underweight. Between 18.5 and 24.9 is in the normal range. Between 25.0 and 29.9 is considered overweight. Of 30.0 or higher is considered obese. A general goal to aim for is a BMI of less than 25. Your doctor or health care provider can help you set an appropriate BMI goal. Measuring waist circumference helps screen for possible health risks. If most of your fat is around your waist rather than at your hips, youre at a higher risk for heart disease and type2 diabetes. This risk may be high with a waist size that is greater than 35 inches for women or greater than 40 inches for men. To learn how to measure your waist, visit Assessing Your Weight and Health Risk. If youre overweight or obese, try to lose weight. A loss of just 3 percent to 5 percent of your current weight can lower your triglycerides, blood glucose, and the risk of developing type 2 diabetes. Greater amounts of weight loss can improve blood pressure readings, lower LDL cholesterol, and increase HDL cholesterol. Managing Stress Learning how to manage stress, relax, and cope with problems can improve your emotional and physical health. Consider healthy stress-reducing activities, such as: A stress management program Meditation Physical activity Relaxation therapy Talking things out with friends or family Physical Activity Regular physical activity can lower many risk factors for stroke. Everyone should try to participate in moderate-intensity aerobic exercise at least 2hours and 30minutes per week or vigorous aerobic exercise for 1hour and 15minutes per week. Aerobic exercise, such as brisk walking, is any exercise in which your heart beats faster and you use more oxygen than usual. The more active you are, the more you will benefit. Participate in aerobic exercise for at least 10minutes at a time spread throughout the week. Talk with your doctor before you start a new exercise plan. Ask your doctor how much and what kinds of physical activity are safe for you. Read more about physical activity at: Physical Activity and Your Heart U.S. Department of Health and Human Services, 2008 Physical Activity Guidelines for Americans Quitting Smoking If you smoke or use tobacco, quit. Smoking can damage and tighten blood vessels and raise your risk for stroke. Talk with your doctor about programs and products that can help you quit. Also, try to avoid secondhand smoke. If you have trouble quitting smoking on your own, consider joining a support group. Many hospitals, workplaces, and community groups offer classes to help people quit smoking. For more information about how to quit smoking, visit Smoking and Your Heart.
How to prevent Stroke ?
Taking action to control your risk factors can help prevent or delay a stroke. If youve already had a stroke, these actions can help prevent another one. Be physically active. Physical activity can improve your fitness level and health. Talk with your doctor about what types and amounts of activity are safe for you. Dont smoke, or if you smoke or use tobacco, quit. Smoking can damage and tighten blood vessels and raise your risk of stroke. Talk with your doctor about programs and products that can help you quit. Also, secondhand smoke can damage the bloodvessels. Maintain a healthy weight. If youre overweight or obese, work with your doctor to create a reasonable weight loss plan. Controlling your weight helps you control risk factors for stroke. Make heart-healthy eating choices. Heart-healthy eating can help lower your risk or prevent a stroke. Manage stress. Use techniques to lower your stress levels. If you or someone in your family has had a stroke, be sure to tell your doctor. By knowing your family history of stroke, you may be able to lower your risk factors and prevent or delay a stroke. If youve had a transient ischemic attack (TIA), dont ignore it. TIAs are warnings, and its important for your doctor to find the cause of the TIA so you can take steps to prevent a stroke.
What is (are) Polycythemia Vera ?
Polycythemia vera (POL-e-si-THEE-me-ah VAY-rah or VE-rah), or PV, is a rare blood disease in which your body makes too many red blood cells. The extra red blood cells make your blood thicker than normal. As a result, blood clots can form more easily. These clots can block blood flow through your arteries and veins, which can cause a heart attack or stroke. Thicker blood also doesn't flow as quickly to your body as normal blood. Slowed blood flow prevents your organs from getting enough oxygen, which can cause serious problems, such as angina (an-JI-nuh or AN-juh-nuh) and heart failure. (Angina is chest pain or discomfort.) Overview Red blood cells carry oxygen to all parts of your body. They also remove carbon dioxide (a waste product) from your body's cells and carry it to the lungs to be exhaled. Red blood cells are made in your bone marrowa sponge-like tissue inside the bones. White blood cells and platelets (PLATE-lets) also are made in your bone marrow. White blood cells help fight infection. Platelets stick together to seal small cuts or breaks on blood vessel walls and stop bleeding. If you have PV, your bone marrow makes too many red blood cells. It also can make too many white blood cells and platelets. A mutation, or change, in the body's JAK2 gene is the major cause of PV. This gene makes a protein that helps the body produce blood cells. What causes the change in the JAK2 gene isn't known. PV generally isn't inheritedthat is, passed from parents to children through genes. PV develops slowly and may not cause symptoms for years. The disease often is found during routine blood tests done for other reasons. When signs and symptoms are present, they're the result of the thick blood that occurs with PV. This thickness slows the flow of oxygen-rich blood to all parts of your body. Without enough oxygen, many parts of your body won't work normally. For example, slower blood flow deprives your arms, legs, lungs, and eyes of the oxygen they need. This can cause headaches, dizziness, itching, and vision problems, such as blurred or double vision. Outlook PV is a serious, chronic (ongoing) disease that can be fatal if not diagnosed and treated. PV has no cure, but treatments can help control the disease and its complications. PV is treated with procedures, medicines, and other methods. You may need one or more treatments to manage the disease.
What causes Polycythemia Vera ?
Primary Polycythemia Polycythemia vera (PV) also is known as primary polycythemia. A mutation, or change, in the body's JAK2 gene is the main cause of PV. The JAK2 gene makes a protein that helps the body produce blood cells. What causes the change in the JAK2 gene isn't known. PV generally isn't inheritedthat is, passed from parents to children through genes. However, in some families, the JAK2 gene may have a tendency to mutate. Other, unknown genetic factors also may play a role in causing PV. Secondary Polycythemia Another type of polycythemia, called secondary polycythemia, isn't related to the JAK2 gene. Long-term exposure to low oxygen levels causes secondary polycythemia. A lack of oxygen over a long period can cause your body to make more of the hormone erythropoietin (EPO). High levels of EPO can prompt your body to make more red blood cells than normal. This leads to thicker blood, as seen in PV. People who have severe heart or lung disease may develop secondary polycythemia. People who smoke, spend long hours at high altitudes, or are exposed to high levels of carbon monoxide where they work or live also are at risk. For example, working in an underground parking garage or living in a home with a poorly vented fireplace or furnace can raise your risk for secondary polycythemia. Rarely, tumors can make and release EPO, or certain blood problems can cause the body to make more EPO. Sometimes doctors can cure secondary polycythemiait depends on whether the underlying cause can be stopped, controlled, or cured.
Who is at risk for Polycythemia Vera? ?
Polycythemia vera (PV) is a rare blood disease. The disease affects people of all ages, but it's most common in adults who are older than 60. PV is rare in children and young adults. Men are at slightly higher risk for PV than women.
What are the symptoms of Polycythemia Vera ?
Polycythemia vera (PV) develops slowly. The disease may not cause signs or symptoms for years. When signs and symptoms are present, they're the result of the thick blood that occurs with PV. This thickness slows the flow of oxygen-rich blood to all parts of your body. Without enough oxygen, many parts of your body won't work normally. The signs and symptoms of PV include: Headaches, dizziness, and weakness Shortness of breath and problems breathing while lying down Feelings of pressure or fullness on the left side of the abdomen due to an enlarged spleen (an organ in the abdomen) Double or blurred vision and blind spots Itching all over (especially after a warm bath), reddened face, and a burning feeling on your skin (especially your hands and feet) Bleeding from your gums and heavy bleeding from small cuts Unexplained weight loss Fatigue (tiredness) Excessive sweating Very painful swelling in a single joint, usually the big toe (called gouty arthritis) In rare cases, people who have PV may have pain in their bones. Polycythemia Vera Complications If you have PV, the thickness of your blood and the slowed blood flow can cause serious health problems. Blood clots are the most serious complication of PV. Blood clots can cause a heart attack or stroke. They also can cause your liver and spleen to enlarge. Blood clots in the liver and spleen can cause sudden, intense pain. Slowed blood flow also prevents enough oxygen-rich blood from reaching your organs. This can lead to angina (chest pain or discomfort) and heart failure. The high levels of red blood cells that PV causes can lead to stomach ulcers, gout, or kidney stones. Some people who have PV may develop myelofibrosis (MY-e-lo-fi-BRO-sis). This is a condition in which your bone marrow is replaced with scar tissue. Abnormal bone marrow cells may begin to grow out of control. This abnormal growth can lead to acute myelogenous (my-eh-LOJ-eh-nus) leukemia (AML), a cancer of the blood and bone marrow. This disease can worsen very quickly.
How to diagnose Polycythemia Vera ?
Polycythemia vera (PV) may not cause signs or symptoms for years. The disease often is found during routine blood tests done for other reasons. If the results of your blood tests aren't normal, your doctor may want to do more tests. Your doctor will diagnose PV based on your signs and symptoms, your age and overall health, your medical history, a physical exam, and test results. During the physical exam, your doctor will look for signs of PV. He or she will check for an enlarged spleen, red skin on your face, and bleeding from your gums. If your doctor confirms that you have polycythemia, the next step is to find out whether you have primary polycythemia (polycythemia vera) or secondary polycythemia. Your medical history and physical exam may confirm which type of polycythemia you have. If not, you may have tests that check the level of the hormone erythropoietin (EPO) in your blood. People who have PV have very low levels of EPO. People who have secondary polycythemia usually have normal or high levels of EPO. Specialists Involved If your primary care doctor thinks you have PV, he or she may refer you to a hematologist. A hematologist is a doctor who specializes in diagnosing and treating blood diseases and conditions. Diagnostic Tests You may have blood tests to diagnose PV. These tests include a complete blood count (CBC) and other tests, if necessary. Complete Blood Count Often, the first test used to diagnose PV is a CBC. The CBC measures many parts of your blood. This test checks your hemoglobin (HEE-muh-glow-bin) and hematocrit (hee-MAT-oh-crit) levels. Hemoglobin is an iron-rich protein that helps red blood cells carry oxygen from the lungs to the rest of the body. Hematocrit is a measure of how much space red blood cells take up in your blood. A high level of hemoglobin or hematocrit may be a sign of PV. The CBC also checks the number of red blood cells, white blood cells, and platelets in your blood. Abnormal results may be a sign of PV, a blood disorder, an infection, or another condition. In addition to high red blood cell counts, people who have PV also may have high white blood cell and/or platelet counts. Other Blood Tests Blood smear. For this test, a small sample of blood is drawn from a vein, usually in your arm. The blood sample is examined under a microscope. A blood smear can show whether you have a higher than normal number of red blood cells. The test also can show abnormal blood cells that are linked to myelofibrosis and other conditions related to PV. Erythropoietin level. This blood test measures the level of EPO in your blood. EPO is a hormone that prompts your bone marrow to make new blood cells. People who have PV have very low levels of EPO. People who have secondary polycythemia usually have normal or high levels of EPO. Bone Marrow Tests Bone marrow tests can show whether your bone marrow is healthy. These tests also show whether your bone marrow is making normal amounts of blood cells. The two bone marrow tests are aspiration (as-pi-RA-shun) and biopsy. For aspiration, your doctor removes a small amount of fluid bone marrow through a needle. For a biopsy, your doctor removes a small amount of bone marrow tissue through a larger needle. The samples are then examined under a microscope. If the tests show that your bone marrow is making too many blood cells, it may be a sign that you have PV.
What are the treatments for Polycythemia Vera ?
Polycythemia vera (PV) doesn't have a cure. However, treatments can help control the disease and its complications. PV is treated with procedures, medicines, and other methods. You may need one or more treatments to manage the disease. Goals of Treatment The goals of treating PV are to control symptoms and reduce the risk of complications, especially heart attack and stroke. To do this, PV treatments reduce the number of red blood cells and the level of hemoglobin (an iron-rich protein) in the blood. This brings the thickness of your blood closer to normal. Blood with normal thickness flows better through the blood vessels. This reduces the chance that blood clots will form and cause a heart attack or stroke. Blood with normal thickness also ensures that your body gets enough oxygen. This can help reduce some of the signs and symptoms of PV, such as headaches, vision problems, and itching. Studies show that treating PV greatly improves your chances of living longer. The goal of treating secondary polycythemia is to control its underlying cause, if possible. For example, if the cause is carbon monoxide exposure, the goal is to find the source of the carbon monoxide and fix or remove it. Treatments To Lower Red Blood Cell Levels Phlebotomy Phlebotomy (fle-BOT-o-me) is a procedure that removes some blood from your body. For this procedure, a needle is inserted into one of your veins. Blood from the vein flows through an airtight tube into a sterile container or bag. The process is similar to the process of donating blood. Phlebotomy reduces your red blood cell count and starts to bring your blood thickness closer to normal. Typically, a pint (1 unit) of blood is removed each week until your hematocrit level approaches normal. (Hematocrit is the measure of how much space red blood cells take up in your blood.) You may need to have phlebotomy done every few months. Medicines Your doctor may prescribe medicines to keep your bone marrow from making too many red blood cells. Examples of these medicines include hydroxyurea and interferon-alpha. Hydroxyurea is a medicine generally used to treat cancer. This medicine can reduce the number of red blood cells and platelets in your blood. As a result, this medicine helps improve your blood flow and bring the thickness of your blood closer to normal. Interferon-alpha is a substance that your body normally makes. It also can be used to treat PV. Interferon-alpha can prompt your immune system to fight overactive bone marrow cells. This helps lower your red blood cell count and keep your blood flow and blood thickness closer to normal. Radiation Treatment Radiation treatment can help suppress overactive bone marrow cells. This helps lower your red blood cell count and keep your blood flow and blood thickness closer to normal. However, radiation treatment can raise your risk of leukemia (blood cancer) and other blood diseases. Treatments for Symptoms Aspirin can relieve bone pain and burning feelings in your hands or feet that you may have as a result of PV. Aspirin also thins your blood, so it reduces the risk of blood clots. Aspirin can have side effects, including bleeding in the stomach and intestines. For this reason, take aspirin only as your doctor recommends. If your PV causes itching, your doctor may prescribe medicines to ease the discomfort. Your doctor also may prescribe ultraviolet light treatment to help relieve your itching. Other ways to reduce itching include: Avoiding hot baths. Cooler water can limit irritation to your skin. Gently patting yourself dry after bathing. Vigorous rubbing with a towel can irritate your skin. Taking starch baths. Add half a box of starch to a tub of lukewarm water. This can help soothe your skin. Experimental Treatments Researchers are studying other treatments for PV. An experimental treatment for itching involves taking low doses of selective serotonin reuptake inhibitors (SSRIs). This type of medicine is used to treat depression. In clinical trials, SSRIs reduced itching in people who had PV. Imatinib mesylate is a medicine that's approved for treating leukemia. In clinical trials, this medicine helped reduce the need for phlebotomy in people who had PV. This medicine also helped reduce the size of enlarged spleens. Researchers also are trying to find a treatment that can block or limit the effects of an abnormal JAK2 gene. (A mutation, or change, in the JAK2 gene is the major cause of PV.)
How to prevent Polycythemia Vera ?
Primary polycythemia (polycythemia vera) can't be prevented. However, with proper treatment, you can prevent or delay symptoms and complications. Sometimes you can prevent secondary polycythemia by avoiding things that deprive your body of oxygen for long periods. For example, you can avoid mountain climbing, living at a high altitude, or smoking. People who have serious heart or lung diseases may develop secondary polycythemia. Treatment for the underlying disease may improve the secondary polycythemia. Following a healthy lifestyle to lower your risk of heart and lung diseases also will help you prevent secondary polycythemia.
What is (are) Sarcoidosis ?
Espaol Sarcoidosis (sar-koy-DO-sis) is a disease of unknown cause that leads to inflammation. This disease affects your bodys organs. Normally, your immune system defends your body against foreign or harmful substances. For example, it sends special cells to protect organs that are in danger. These cells release chemicals that recruit other cells to isolate and destroy the harmful substance. Inflammation occurs during this process. Once the harmful substance is gone, the cells and the inflammation go away. In people who have sarcoidosis, the inflammation doesn't go away. Instead, some of the immune system cells cluster to form lumps called granulomas (gran-yu-LO-mas) in various organs in your body. Overview Sarcoidosis can affect any organ in your body. However, it's more likely to affect some organs than others. The disease usually starts in the lungs, skin, and/or lymph nodes (especially the lymph nodes in your chest). Also, the disease often affects the eyes and liver. Although less common, sarcoidosis can affect the heart and brain, leading to serious complications. If many granulomas form in an organ, they can affect how the organ works. This can cause signs and symptoms. Signs and symptoms vary depending on which organs are affected. Many people who have sarcoidosis have no signs or symptoms or mild ones. Lofgren's syndrome is a classic set of signs and symptoms that is typical in some people who have sarcoidosis. Lofgren's syndrome may cause fever, enlarged lymph nodes, arthritis (usually in the ankles), and/or erythema nodosum (er-ih-THE-ma no-DO-sum). Erythema nodosum is a rash of red or reddish-purple bumps on your ankles and shins. The rash may be warm and tender to the touch. Treatment for sarcoidosis varies depending on which organs are affected. Your doctor may prescribe topical treatments and/or medicines to treat the disease. Not everyone who has sarcoidosis needs treatment. Outlook The outlook for sarcoidosis varies. Many people recover from the disease with few or no long-term problems. More than half of the people who have sarcoidosis have remission within 3 years of diagnosis. Remission means the disease isn't active, but it can return. Two-thirds of people who have the disease have remission within 10 years of diagnosis. People who have Lofgren's syndrome usually have remission. Relapse (return of the disease) 1 or more years after remission occurs in less than 5 percent of patients. Sarcoidosis leads to organ damage in about one-third of the people diagnosed with the disease. Damage may occur over many years and involve more than one organ. Rarely, sarcoidosis can be fatal. Death usually is the result of problems with the lungs, heart, or brain. Poor outcomes are more likely in people who have advanced disease and show little improvement from treatment. Certain people are at higher risk for poor outcomes from chronic (long-term) sarcoidosis. This includes people who have lung scarring, heart or brain complications, or lupus pernio (LU-pus PUR-ne-o). Lupus pernio is a serious skin condition that sarcoidosis may cause. Research is ongoing for new and better treatments for sarcoidosis.
What causes Sarcoidosis ?
The cause of sarcoidosis isn't known. More than one factor may play a role in causing the disease. Some researchers think that sarcoidosis develops if your immune system responds to a trigger, such as bacteria, viruses, dust, or chemicals. Normally, your immune system defends your body against foreign or harmful substances. For example, it sends special cells to protect organs that are in danger. These cells release chemicals that recruit other cells to isolate and destroy the harmful substance. Inflammation occurs during this process. Once the harmful substance is gone, the cells and the inflammation go away. In people who have sarcoidosis, the inflammation doesn't go away. Instead, some of the immune system cells cluster to form lumps called granulomas in various organs in your body. Genetics also may play a role in sarcoidosis. Researchers believe that sarcoidosis occurs if: You have a certain gene or genes that raise your risk for the disease And You're exposed to something that triggers your immune system Triggers may vary depending on your genetic makeup. Certain genes may influence which organs are affected and the severity of your symptoms. Researchers continue to try to pinpoint the genes that are linked to sarcoidosis.
Who is at risk for Sarcoidosis? ?
Sarcoidosis affects people of all ages and races. However, it's more common among African Americans and Northern Europeans. In the United States, the disease affects African Americans somewhat more often and more severely than Whites. Studies have shown that sarcoidosis tends to vary amongst ethnic groups. For example, eye problems related to the disease are more common in Japanese people. Lofgren's syndrome, a type of sarcoidosis, is more common in people of European descent. Lofgren's syndrome may involve fever, enlarged lymph nodes, arthritis (usually in the ankles), and/or erythema nodosum. Erythema nodosum is a rash of red or reddish-purple bumps on your ankles and shins. The rash may be warm and tender to the touch. Sarcoidosis is somewhat more common in women than in men. The disease usually develops between the ages of 20 and 50. People who have a family history of sarcoidosis also are at higher risk for the disease. Researchers have looked for a link between sarcoidosis and exposure to workplace and environmental factors. However, no clear link has been found.
What are the symptoms of Sarcoidosis ?
Many people who have sarcoidosis have no signs or symptoms or mild ones. Often, the disease is found when a chest x ray is done for another reason (for example, to diagnose pneumonia). The signs and symptoms of sarcoidosis vary depending on which organs are affected. Signs and symptoms also may vary depending on your gender, age, and ethnic background. (For more information, go to "Who Is at Risk for Sarcoidosis?") Common Signs and Symptoms In both adults and children, sarcoidosis most often affects the lungs. If granulomas (inflamed lumps) form in your lungs, you may wheeze, cough, feel short of breath, or have chest pain. Or, you may have no symptoms at all. Some people who have sarcoidosis feel very tired, uneasy, or depressed. Night sweats and weight loss are common symptoms of the disease. Common signs and symptoms in children are fatigue (tiredness), loss of appetite, weight loss, bone and joint pain, and anemia. Children who are younger than 4 years old may have a distinct form of sarcoidosis. It may cause enlarged lymph nodes in the chest (which can be seen on chest x-ray pictures), skin lesions, and eye swelling or redness. Other Signs and Symptoms Sarcoidosis may affect your lymph nodes. The disease can cause enlarged lymph nodes that feel tender. Sarcoidosis usually affects the lymph nodes in your neck and chest. However, the disease also may affect the lymph nodes under your chin, in your armpits, or in your groin. Sarcoidosis can cause lumps, ulcers (sores), or areas of discolored skin. These areas may itch, but they don't hurt. These signs tend to appear on your back, arms, legs, and scalp. Sometimes they appear near your nose or eyes. These signs usually last a long time. Sarcoidosis may cause a more serious skin condition called lupus pernio. Disfiguring skin sores may affect your nose, nasal passages, cheeks, ears, eyelids, and fingers. These sores tend to be ongoing. They can return after treatment is over. Sarcoidosis also can cause eye problems. If you have sarcoidosis, having an annual eye exam is important. If you have changes in your vision and can't see as clearly or can't see color, call 911 or have someone drive you to the emergency room. You should call your doctor if you have any new eye symptoms, such as burning, itching, tearing, pain, or sensitivity to light. Signs and symptoms of sarcoidosis also may include an enlarged liver, spleen, or salivary glands. Although less common, sarcoidosis can affect the heart and brain. This can cause many symptoms, such as abnormal heartbeats, shortness of breath, headaches, and vision problems. If sarcoidosis affects the heart or brain, serious complications can occur. Lofgren's Syndrome Lofgren's syndrome is a classic set of signs and symptoms that occur in some people when they first have sarcoidosis. Signs and symptoms may include: Fever. This symptom only occurs in some people. Enlarged lymph nodes (which can be seen on a chest x ray). Arthritis, usually in the ankles. This symptom is more common in men than women. Erythema nodosum. This is a rash of red or reddish-purple bumps on your ankles and shins. The rash may be warm and tender to the touch. This symptom is more common in women than men. Sarcoidosis Signs and Symptoms
How to diagnose Sarcoidosis ?
Your doctor will diagnose sarcoidosis based on your medical history, a physical exam, and test results. He or she will look for granulomas (inflamed lumps) in your organs. Your doctor also will try to rule out other possible causes of your symptoms. Medical History Your doctor may ask you detailed questions about your medical history. For example, he or she may ask whether you: Have a family history of sarcoidosis. Have had any jobs that may have raised your risk for the disease. Have ever been exposed to inhaled beryllium metal. (This type of metal is used to make aircrafts and weapons.) Have had contact with organic dust from birds or hay. Exposure to beryllium metal and organic dust can cause inflamed lumps in your lungs that look like the granulomas from sarcoidosis. However, these lumps are signs of other conditions. Physical Exam Your doctor will check you for signs and symptoms of sarcoidosis. Signs and symptoms may include red bumps on your skin; swollen lymph nodes; an enlarged liver, spleen, or salivary glands; or redness in your eyes. Your doctor also will check for other causes of your symptoms. Your doctor may listen to your lungs and heart. Abnormal breathing or heartbeat sounds could be a sign that sarcoidosis is affecting your lungs or heart. Diagnostic Tests You may have tests to confirm a diagnosis and to find out how sarcoidosis is affecting you. Tests include a chest x ray, lung function tests, biopsy, and other tests to assess organ damage. Chest X Ray A chest x ray is a painless test that creates pictures of the structures inside your chest, such as your heart and lungs. The test may show granulomas or enlarged lymph nodes in your chest. About 95 percent of people who have sarcoidosis have abnormal chest xrays. Lung Function Tests Lung function tests measure how much air you can breathe in and out, how fast you can breathe air out, and how well your lungs deliver oxygen to your blood. These tests can show whether sarcoidosis is affecting your lungs. Biopsy Your doctor may do a biopsy to confirm a diagnosis or rule out other causes of your symptoms. A biopsy involves taking a small sample of tissue from one of your affected organs. Usually, doctors try to biopsy the organs that are easiest to access. Examples include the skin, tear glands, or the lymph nodes that are just under the skin. If this isn't possible, your doctor may use a positron emission tomography (PET) scan to pinpoint areas for biopsy. For this test, a small amount of radioactive substance is injected into a vein, usually in your arm. The substance, which releases energy, travels through the blood and collects in organs or tissues. Special cameras detect the energy and convert it into three-dimensional (3D) pictures. If lung function tests or a chest x ray shows signs of sarcoidosis in your lungs, your doctor may do a bronchoscopy (bron-KOS-ko-pee) to get a small sample of lung tissue. During this procedure, a thin, flexible tube is passed through your nose (or sometimes your mouth), down your throat, and into the airways to reach your lung tissue. (For more information, go to the Health Topics Bronchoscopy article.) Other Tests To Assess Organ Damage You also may have other tests to assess organ damage and find out whether you need treatment. For example, your doctor may recommend blood tests and/or an EKG (electrocardiogram). If youre diagnosed with sarcoidosis, you should see an ophthalmologist (eye specialist), even if you dont have eye symptoms. In sarcoidosis, eye damage can occur without symptoms.
What are the treatments for Sarcoidosis ?
Not everyone who has sarcoidosis needs treatment. Sometimes the disease goes away on its own. Whether you need treatment and what type of treatment you need depend on your signs and symptoms, which organs are affected, and whether those organs are working well. If the disease affects certain organssuch as your eyes, heart, or brainyou'll need treatment even if you don't have any symptoms. In either case, whether you have symptoms or not, you should see your doctor for ongoing care. He or she will want to check to make sure that the disease isn't damaging your organs. For example, you may need routine lung function tests to make sure that your lungs are working well. If the disease isn't worsening, your doctor may watch you closely to see whether the disease goes away on its own. If the disease does start to get worse, your doctor can prescribe treatment. The goals of treatment include: Relieving symptoms Improving organ function Controlling inflammation and reducing the size of granulomas (inflamed lumps) Preventing pulmonary fibrosis (lung scarring) if your lungs are affected Your doctor may prescribe topical treatments and/or medicines to treat the disease. Medicines Prednisone Prednisone, a type of steroid, is the main treatment for sarcoidosis. This medicine reduces inflammation. In most people, prednisone relieves symptoms within a couple of months. Although most people need to take prednisone for 12 months or longer, your doctor may lower the dose within a few months after you start the medicine. Long-term use of prednisone, especially at high doses, can cause serious side effects. Work with your doctor to decide whether the benefits of this medicine outweigh the risks. If your doctor prescribes this treatment, he or she will find the lowest dose that controls your disease. When you stop taking prednisone, you should cut back slowly (as your doctor advises). This will help prevent flareups of sarcoidosis. Cutting back slowly also allows your body to adjust to not having the medicine. If a relapse or flareup occurs after you stop taking prednisone, you may need a second round of treatment. If you remain stable for more than 1 year after stopping this treatment, the risk of relapse is low. Other Medicines Other medicines, besides prednisone, also are used to treat sarcoidosis. Examples include: Hydroxychloroquine or chloroquine (known as antimalarial medicines). These medicines work best for treating sarcoidosis that affects the skin or brain. Your doctor also may prescribe an antimalarial if you have a high level of calcium in your blood due to sarcoidosis. Medicines that suppress the immune system, such as methotrexate, azathioprine, or leflunomide. These medicines work best for treating sarcoidosis that affects your lungs, eyes, skin, or joints. Your doctor may prescribe these medicines if your sarcoidosis worsens while you're taking prednisone or if you can't handle prednisone's side effects. If you have Lofgren's syndrome with pain or fever, your doctor may prescribe nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. If you're wheezing and coughing, you may need inhaled medicine to help open your airways. You take inhaled medicine using an inhaler. This device allows the medicine to go straight to your lungs. Anti-tumor necrosis factor drugs, originally developed to treat arthritis, are being studied to treat sarcoidosis. Ongoing Research Researchers continue to look for new and better treatments for sarcoidosis. They're currently studying treatments aimed at the immune system. Researchers also are studying antibiotics as a possible treatment for sarcoidosis that affects the skin. For more information about ongoing research, go to the Clinical Trials section of this article.
What is (are) Iron-Deficiency Anemia ?
Espaol Iron-deficiency anemia is a common, easily treated condition that occurs if you don't have enough iron in your body. Low iron levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type of anemia. The term "anemia" usually refers to a condition in which your blood has a lower than normal number of red blood cells. Red blood cells carry oxygen and remove carbon dioxide (a waste product) from your body. Anemia also can occur if your red blood cells don't contain enough hemoglobin (HEE-muh-glow-bin). Hemoglobin is an iron-rich protein that carries oxygen from the lungs to the rest of the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron to build healthy red blood cells. Without enough iron, your body starts using the iron it has stored. Soon, the stored iron gets used up. After the stored iron is gone, your body makes fewer red blood cells. The red blood cells it does make have less hemoglobin than normal. Iron-deficiency anemia can cause fatigue (tiredness), shortness of breath, chest pain, and other symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, and other complications. Infants and young children and women are the two groups at highest risk for iron-deficiency anemia. Outlook Doctors usually can successfully treat iron-deficiency anemia. Treatment will depend on the cause and severity of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require treatment in a hospital, blood transfusions, iron injections, or intravenous iron therapy.
What causes Iron-Deficiency Anemia ?
Not having enough iron in your body causes iron-deficiency anemia. Lack of iron usually is due to blood loss, poor diet, or an inability to absorb enough iron from food. Blood Loss When you lose blood, you lose iron. If you don't have enough iron stored in your body to make up for the lost iron, you'll develop iron-deficiency anemia. In women, long or heavy menstrual periods or bleeding fibroids in the uterus may cause low iron levels. Blood loss that occurs during childbirth is another cause of low iron levels in women. Internal bleeding (bleeding inside the body) also may lead to iron-deficiency anemia. This type of blood loss isn't always obvious, and it may occur slowly. Some causes of internal bleeding are: A bleeding ulcer, colon polyp, or colon cancer Regular use of aspirin or other pain medicines, such as nonsteroidal anti-inflammatory drugs (for example, ibuprofen and naproxen) Urinary tract bleeding Blood loss from severe injuries, surgery, or frequent blood drawings also can cause iron-deficiency anemia. Poor Diet The best sources of iron are meat, poultry, fish, and iron-fortified foods (foods that have iron added). If you don't eat these foods regularly, or if you don't take an iron supplement, you're more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark green leafy vegetables. During some stages of life, such as pregnancy and childhood, it may be hard to get enough iron in your diet. This is because your need for iron increases during these times of growth and development. Inability To Absorb Enough Iron Even if you have enough iron in your diet, your body may not be able to absorb it. This can happen if you have intestinal surgery (such as gastric bypass) or a disease of the intestine (such as Crohn's disease or celiac disease). Prescription medicines that reduce acid in the stomach also can interfere with iron absorption.
Who is at risk for Iron-Deficiency Anemia? ?
Infants and Young Children Infants and young children need a lot of iron to grow and develop. The iron that full-term infants have stored in their bodies is used up in the first 4 to 6 months of life. Premature and low-birth-weight babies (weighing less than 5.5 pounds) are at even greater risk for iron-deficiency anemia. These babies don't have as much iron stored in their bodies as larger, full-term infants. Iron-fortified baby food or iron supplements, when used properly, can help prevent iron-deficiency anemia in infants and young children. Talk with your child's doctor about your child's diet. Young children who drink a lot of cow's milk may be at risk for iron-deficiency anemia. Milk is low in iron, and too much milk may take the place of iron-rich foods in the diet. Too much milk also may prevent children's bodies from absorbing iron from other foods. Children who have lead in their blood also may be at risk for iron-deficiency anemia. Lead can interfere with the body's ability to make hemoglobin. Lead may get into the body from breathing in lead dust, eating lead in paint or soil, or drinking water that contains lead. Teens Teens are at risk for iron-deficiency anemia if they're underweight or have chronic (ongoing) illnesses. Teenage girls who have heavy periods also are at increased risk for the condition. Women Women of childbearing age are at higher risk for iron-deficiency anemia because of blood loss during their monthly periods. About 1 in 5 women of childbearing age has iron-deficiency anemia. Pregnant women also are at higher risk for the condition because they need twice as much iron as usual. The extra iron is needed for increased blood volume and for the fetus' growth. About half of all pregnant women develop iron-deficiency anemia. The condition can increase a pregnant woman's risk for a premature or low-birth-weight baby. Adults Who Have Internal Bleeding Adults who have internal bleeding, such as intestinal bleeding, can develop iron-deficiency anemia due to blood loss. Certain conditions, such as colon cancer and bleeding ulcers, can cause blood loss. Some medicines, such as aspirin, also can cause internal bleeding. Other At-Risk Groups People who get kidney dialysis treatment may develop iron-deficiency anemia. This is because blood is lost during dialysis. Also, the kidneys are no longer able to make enough of a hormone that the body needs to produce red blood cells. People who have gastric bypass surgery also may develop iron-deficiency anemia. This type of surgery can prevent the body from absorbing enough iron. Certain eating patterns or habits may put you at higher risk for iron-deficiency anemia. This can happen if you: Follow a diet that excludes meat and fish, which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark green leafy vegetables. Eat poorly because of money, social, health, or other problems. Follow a very low-fat diet over a long time. Some higher fat foods, like meat, are the best sources of iron. Follow a high-fiber diet. Large amounts of fiber can slow the absorption of iron.
What are the symptoms of Iron-Deficiency Anemia ?
The signs and symptoms of iron-deficiency anemia depend on its severity. Mild to moderate iron-deficiency anemia may have no signs or symptoms. When signs and symptoms do occur, they can range from mild to severe. Many of the signs and symptoms of iron-deficiency anemia apply to all types of anemia. Signs and Symptoms of Anemia The most common symptom of all types of anemia is fatigue (tiredness). Fatigue occurs because your body doesn't have enough red blood cells to carry oxygen to its many parts. Also, the red blood cells your body makes have less hemoglobin than normal. Hemoglobin is an iron-rich protein in red blood cells. It helps red blood cells carry oxygen from the lungs to the rest of the body. Anemia also can cause shortness of breath, dizziness, headache, coldness in your hands and feet, pale skin, chest pain, weakness, and fatigue (tiredness). If you don't have enough hemoglobin-carrying red blood cells, your heart has to work harder to move oxygen-rich blood through your body. This can lead to irregular heartbeats called arrhythmias (ah-RITH-me-ahs), a heart murmur, an enlarged heart, or even heart failure. In infants and young children, signs of anemia include poor appetite, slowed growth and development, and behavioral problems. Signs and Symptoms of Iron Deficiency Signs and symptoms of iron deficiency may include brittle nails, swelling or soreness of the tongue, cracks in the sides of the mouth, an enlarged spleen, and frequent infections. People who have iron-deficiency anemia may have an unusual craving for nonfood items, such as ice, dirt, paint, or starch. This craving is called pica (PI-ka or PE-ka). Some people who have iron-deficiency anemia develop restless legs syndrome (RLS). RLS is a disorder that causes a strong urge to move the legs. This urge to move often occurs with strange and unpleasant feelings in the legs. People who have RLS often have a hard time sleeping. Iron-deficiency anemia can put children at greater risk for lead poisoning and infections. Some signs and symptoms of iron-deficiency anemia are related to the condition's causes. For example, a sign of intestinal bleeding is bright red blood in the stools or black, tarry-looking stools. Very heavy menstrual bleeding, long periods, or other vaginal bleeding may suggest that a woman is at risk for iron-deficiency anemia.
How to diagnose Iron-Deficiency Anemia ?
Your doctor will diagnose iron-deficiency anemia based on your medical history, a physical exam, and the results from tests and procedures. Once your doctor knows the cause and severity of the condition, he or she can create a treatment plan for you. Mild to moderate iron-deficiency anemia may have no signs or symptoms. Thus, you may not know you have it unless your doctor discovers it from a screening test or while checking for other problems. Specialists Involved Primary care doctors often diagnose and treat iron-deficiency anemia. These doctors include pediatricians, family doctors, gynecologists/obstetricians, and internal medicine specialists. A hematologist (a blood disease specialist), a gastroenterologist (a digestive system specialist), and other specialists also may help treat iron-deficiency anemia. Medical History Your doctor will ask about your signs and symptoms and any past problems you've had with anemia or low iron. He or she also may ask about your diet and whether you're taking any medicines. If you're a woman, your doctor may ask whether you might be pregnant. Physical Exam Your doctor will do a physical exam to look for signs of iron-deficiency anemia. He or she may: Look at your skin, gums, and nail beds to see whether they're pale Listen to your heart for rapid or irregular heartbeats Listen to your lungs for rapid or uneven breathing Feel your abdomen to check the size of your liver and spleen Do a pelvic and rectal exam to check for internal bleeding Diagnostic Tests and Procedures Many tests and procedures are used to diagnose iron-deficiency anemia. They can help confirm a diagnosis, look for a cause, and find out how severe the condition is. Complete Blood Count Often, the first test used to diagnose anemia is a complete blood count (CBC). The CBC measures many parts of your blood. This test checks your hemoglobin and hematocrit (hee-MAT-oh-crit) levels. Hemoglobin is an iron-rich protein in red blood cells that carries oxygen to the body. Hematocrit is a measure of how much space red blood cells take up in your blood. A low level of hemoglobin or hematocrit is a sign of anemia. The normal range of these levels varies in certain racial and ethnic populations. Your doctor can explain your test results to you. The CBC also checks the number of red blood cells, white blood cells, and platelets in your blood. Abnormal results may be a sign of infection, a blood disorder, or another condition. Finally, the CBC looks at mean corpuscular (kor-PUS-kyu-lar) volume (MCV). MCV is a measure of the average size of your red blood cells. The results may be a clue as to the cause of your anemia. In iron-deficiency anemia, for example, red blood cells usually are smaller than normal. Other Blood Tests If the CBC results confirm you have anemia, you may need other blood tests to find out what's causing the condition, how severe it is, and the best way to treat it. Reticulocyte count. This test measures the number of reticulocytes (re-TIK-u-lo-sites) in your blood. Reticulocytes are young, immature red blood cells. Over time, reticulocytes become mature red blood cells that carry oxygen throughout your body. A reticulocyte count shows whether your bone marrow is making red blood cells at the correct rate. Peripheral smear. For this test, a sample of your blood is examined under a microscope. If you have iron-deficiency anemia, your red blood cells will look smaller and paler than normal. Tests to measure iron levels. These tests can show how much iron has been used from your body's stored iron. Tests to measure iron levels include: Serum iron. This test measures the amount of iron in your blood. The level of iron in your blood may be normal even if the total amount of iron in your body is low. For this reason, other iron tests also are done. Serum ferritin. Ferritin is a protein that helps store iron in your body. A measure of this protein helps your doctor find out how much of your body's stored iron has been used. Transferrin level, or total iron-binding capacity. Transferrin is a protein that carries iron in your blood. Total iron-binding capacity measures how much of the transferrin in your blood isn't carrying iron. If you have iron-deficiency anemia, you'll have a high level of transferrin that has no iron. Other tests. Your doctor also may recommend tests to check your hormone levels, especially your thyroid hormone. You also may have a blood test for a chemical called erythrocyte protoporphyrin. This chemical is a building block for hemoglobin. Children also may be tested for the level of lead in their blood. Lead can make it hard for the body to produce hemoglobin. Tests and Procedures for Gastrointestinal Blood Loss To check whether internal bleeding is causing your iron-deficiency anemia, your doctor may suggest a fecal occult blood test. This test looks for blood in the stools and can detect bleeding in the intestines. If the test finds blood, you may have other tests and procedures to find the exact spot of the bleeding. These tests and procedures may look for bleeding in the stomach, upper intestines, colon, or pelvic organs.
What are the treatments for Iron-Deficiency Anemia ?
Treatment for iron-deficiency anemia will depend on its cause and severity. Treatments may include dietary changes and supplements, medicines, and surgery. Severe iron-deficiency anemia may require a blood transfusion, iron injections, or intravenous (IV) iron therapy. Treatment may need to be done in a hospital. The goals of treating iron-deficiency anemia are to treat its underlying cause and restore normal levels of red blood cells, hemoglobin, and iron. Dietary Changes and Supplements Iron You may need iron supplements to build up your iron levels as quickly as possible. Iron supplements can correct low iron levels within months. Supplements come in pill form or in drops for children. Large amounts of iron can be harmful, so take iron supplements only as your doctor prescribes. Keep iron supplements out of reach from children. This will prevent them from taking an overdose of iron. Iron supplements can cause side effects, such as dark stools, stomach irritation, and heartburn. Iron also can cause constipation, so your doctor may suggest that you use a stool softener. Your doctor may advise you to eat more foods that are rich in iron. The best source of iron is red meat, especially beef and liver. Chicken, turkey, pork, fish, and shellfish also are good sources of iron. The body tends to absorb iron from meat better than iron from nonmeat foods. However, some nonmeat foods also can help you raise your iron levels. Examples of nonmeat foods that are good sources of iron include: Iron-fortified breads and cereals Peas; lentils; white, red, and baked beans; soybeans; and chickpeas Tofu Dried fruits, such as prunes, raisins, and apricots Spinach and other dark green leafy vegetables Prune juice The Nutrition Facts labels on packaged foods will show how much iron the items contain. The amount is given as a percentage of the total amount of iron you need every day. Vitamin C Vitamin C helps the body absorb iron. Good sources of vitamin C are vegetables and fruits, especially citrus fruits. Citrus fruits include oranges, grapefruits, tangerines, and similar fruits. Fresh and frozen fruits, vegetables, and juices usually have more vitamin C than canned ones. If you're taking medicines, ask your doctor or pharmacist whether you can eat grapefruit or drink grapefruit juice. Grapefruit can affect the strength of a few medicines and how well they work. Other fruits rich in vitamin C include kiwi fruit, strawberries, and cantaloupes. Vegetables rich in vitamin C include broccoli, peppers, Brussels sprouts, tomatoes, cabbage, potatoes, and leafy green vegetables like turnip greens and spinach. Treatment To Stop Bleeding If blood loss is causing iron-deficiency anemia, treatment will depend on the cause of the bleeding. For example, if you have a bleeding ulcer, your doctor may prescribe antibiotics and other medicines to treat the ulcer. If a polyp or cancerous tumor in your intestine is causing bleeding, you may need surgery to remove the growth. If you have heavy menstrual flow, your doctor may prescribe birth control pills to help reduce your monthly blood flow. In some cases, surgery may be advised. Treatments for Severe Iron-Deficiency Anemia Blood Transfusion If your iron-deficiency anemia is severe, you may get a transfusion of red blood cells. A blood transfusion is a safe, common procedure in which blood is given to you through an IV line in one of your blood vessels. A transfusion requires careful matching of donated blood with the recipient's blood. A transfusion of red blood cells will treat your anemia right away. The red blood cells also give a source of iron that your body can reuse. However, a blood transfusion is only a short-term treatment. Your doctor will need to find and treat the cause of your anemia. Blood transfusions are usually reserved for people whose anemia puts them at a higher risk for heart problems or other severe health issues. For more information, go to the Health Topics Blood Transfusion article. Iron Therapy If you have severe anemia, your doctor may recommend iron therapy. For this treatment, iron is injected into a muscle or an IV line in one of your blood vessels. IV iron therapy presents some safety concerns. It must be done in a hospital or clinic by experienced staff. Iron therapy usually is given to people who need iron long-term but can't take iron supplements by mouth. This therapy also is given to people who need immediate treatment for iron-deficiency anemia.
How to prevent Iron-Deficiency Anemia ?
Eating a well-balanced diet that includes iron-rich foods may help you prevent iron-deficiency anemia. Taking iron supplements also may lower your risk for the condition if you're not able to get enough iron from food. Large amounts of iron can be harmful, so take iron supplements only as your doctor prescribes. For more information about diet and supplements, go to "How Is Iron-Deficiency Anemia Treated?" Infants and young children and women are the two groups at highest risk for iron-deficiency anemia. Special measures can help prevent the condition in these groups. Infants and Young Children A baby's diet can affect his or her risk for iron-deficiency anemia. For example, cow's milk is low in iron. For this and other reasons, cow's milk isn't recommended for babies in their first year. After the first year, you may need to limit the amount of cow's milk your baby drinks. Also, babies need more iron as they grow and begin to eat solid foods. Talk with your child's doctor about a healthy diet and food choices that will help your child get enough iron. Your child's doctor may recommend iron drops. However, giving a child too much iron can be harmful. Follow the doctor's instructions and keep iron supplements and vitamins away from children. Asking for child-proof packages for supplements can help prevent overdosing in children. Because recent research supports concerns that iron deficiency during infancy and childhood can have long-lasting, negative effects on brain health, the American Academy of Pediatrics recommends testing all infants for anemia at 1 year of age. Women and Girls Women of childbearing age may be tested for iron-deficiency anemia, especially if they have: A history of iron-deficiency anemia Heavy blood loss during their monthly periods Other risk factors for iron-deficiency anemia The Centers for Disease Control and Prevention (CDC) has developed guidelines for who should be screened for iron deficiency, and how often: Girls aged 12 to 18 and women of childbearing age who are not pregnant: Every 5 to 10 years. Women who have risk factors for iron deficiency: Once a year. Pregnant women: At the first prenatal visit. For pregnant women, medical care during pregnancy usually includes screening for anemia. Also, your doctor may prescribe iron supplements or advise you to eat more iron-rich foods.This not only will help you avoid iron-deficiency anemia, but also may lower your risk of having a low-birth-weight baby.
What is (are) Pulmonary Hypertension ?
Pulmonary hypertension (PULL-mun-ary HI-per-TEN-shun), or PH, is increased pressure in the pulmonary arteries. These arteries carry blood from your heart to your lungs to pick up oxygen. PH causes symptoms such as shortness of breath during routine activity (for example, climbing two flights of stairs), tiredness, chest pain, and a racing heartbeat. As the condition worsens, its symptoms may limit all physical activity. Overview To understand PH, it helps to understand how your heart and lungs work. Your heart has two sides, separated by an inner wall called the septum. Each side of your heart has an upper and lower chamber. The lower right chamber of your heart, the right ventricle (VEN-trih-kul), pumps blood to your pulmonary arteries. The blood then travels to your lungs, where it picks up oxygen. The upper left chamber of your heart, the left atrium (AY-tree-um), receives the oxygen-rich blood from your lungs. The blood is then pumped into the lower left chamber of your heart, the left ventricle. From the left ventricle, the blood is pumped to the rest of your body through an artery called the aorta. For more information about the heart and lungs, go to the Diseases and Conditions Index How the Heart Works and How the Lungs Work articles. PH begins with inflammation and changes in the cells that line your pulmonary arteries. Other factors also can affect the pulmonary arteries and cause PH. For example, the condition may develop if: The walls of the arteries tighten. The walls of the arteries are stiff at birth or become stiff from an overgrowth of cells. Blood clots form in the arteries. These changes make it hard for your heart to push blood through your pulmonary arteries and into your lungs. As a result, the pressure in your arteries rises. Also, because your heart is working harder than normal, your right ventricle becomes strained and weak. Your heart may become so weak that it can't pump enough blood to your lungs. This causes heart failure. Heart failure is the most common cause of death in people who have PH. PH is divided into five groups based on its causes. In all groups, the average pressure in the pulmonary arteries is higher than 25 mmHg at rest or 30 mmHg during physical activity. The pressure in normal pulmonary arteries is 820 mmHg at rest. (The mmHg is millimeters of mercurythe units used to measure blood pressure.) Other diseases or conditions, such as heart and lung diseases or blood clots, usually cause PH. Some people inherit the condition (that is, their parents pass the genes for PH on to them). In some cases, the cause isn't known. Outlook PH has no cure. However, research for new treatments is ongoing. The earlier PH is treated, the easier it is to control. Treatments include medicines, procedures, and other therapies. These treatments can relieve PH symptoms and slow the progress of the disease. Lifestyle changes also can help control symptoms.
What causes Pulmonary Hypertension ?
Pulmonary hypertension (PH) begins with inflammation and changes in the cells that line your pulmonary arteries. Other factors also can affect the pulmonary arteries and cause PH. For example, the condition may develop if: The walls of the arteries tighten. The walls of the arteries are stiff at birth or become stiff from an overgrowth of cells. Blood clots form in the arteries. These changes make it hard for your heart to push blood through your pulmonary arteries and into your lungs. Thus, the pressure in the arteries rises, causing PH. Many factors can contribute to the process that leads to the different types of PH. Group 1 pulmonary arterial hypertension (PAH) may have no known cause, or the condition may be inherited. ("Inherited" means the condition is passed from parents to children through genes.) Some diseases and conditions also can cause group 1 PAH. Examples include HIV infection, congenital heart disease, and sickle cell disease. Also, the use of street drugs (such as cocaine) and certain diet medicines can lead to PAH. Many diseases and conditions can cause groups 2 through 5 PH (often called secondary PH), including: Mitral valve disease Lung diseases, such as COPD (chronic obstructive pulmonary disease) Sleep apnea Sarcoidosis For more information about the types of PH and the diseases, conditions, and factors that can cause them, go to "Types of Pulmonary Hypertension."
Who is at risk for Pulmonary Hypertension? ?
The exact number of people who have pulmonary hypertension (PH) isn't known. Group 1 pulmonary arterial hypertension (PAH) without a known cause is rare. It affects women more often than men. People who have group 1 PAH tend to be overweight. PH that occurs with another disease or condition is more common. PH usually develops between the ages of 20 and 60, but it can occur at any age. People who are at increased risk for PH include: Those who have a family history of the condition. Those who have certain diseases or conditions, such as heart and lung diseases, liver disease, HIV infection, or blood clots in the pulmonary arteries. (For more information about the diseases, conditions, and factors that cause PH, go to "Types of Pulmonary Hypertension.") Those who use street drugs (such as cocaine) or certain diet medicines. Those who live at high altitudes.
What are the symptoms of Pulmonary Hypertension ?
Signs and symptoms of pulmonary hypertension (PH) may include: Shortness of breath during routine activity, such as climbing two flights of stairs Tiredness Chest pain A racing heartbeat Pain on the upper right side of the abdomen Decreased appetite As PH worsens, you may find it hard to do any physical activities. At this point, other signs and symptoms may include: Feeling light-headed, especially during physical activity Fainting at times Swelling in your legs and ankles A bluish color on your lips and skin
How to diagnose Pulmonary Hypertension ?
Your doctor will diagnose pulmonary hypertension (PH) based on your medical and family histories, a physical exam, and the results from tests and procedures. PH can develop slowly. In fact, you may have it for years and not know it. This is because the condition has no early signs or symptoms. When symptoms do occur, they're often like those of other heart and lung conditions, such as asthma. This makes PH hard to diagnose. Medical and Family Histories Your doctor may ask about your signs and symptoms and how and when they began. He or she also may ask whether you have other medical conditions that can cause PH. Your doctor will want to know whether you have any family members who have or have had PH. People who have a family history of PH are at higher risk for the condition. Physical Exam During the physical exam, your doctor will listen to your heart and lungs with a stethoscope. He or she also will check your ankles and legs for swelling and your lips and skin for a bluish color. These are signs of PH. Diagnostic Tests and Procedures Your doctor may recommend tests and procedures to confirm a diagnosis of PH and to look for its underlying cause. Your doctor also will use test results to find out the severity of your PH. Tests and Procedures To Confirm a Diagnosis Echocardiography. Echocardiography (EK-o-kar-de-OG-ra-fee), or echo, uses sound waves to create a moving picture of your heart. This test can estimate the pressure in your pulmonary arteries. Echo also can show the size and thickness of your right ventricle and how well it's working. Chest x ray. A chest x ray takes pictures of the structures in your chest, such as your heart, lungs, and blood vessels. This test can show whether your pulmonary arteries and right ventricle are enlarged. The pulmonary arteries and right ventricle may get larger if the right ventricle has to work hard to pump blood through the pulmonary arteries. A chest x ray also may show signs of an underlying lung disease that's causing or contributing to PH. EKG (electrocardiogram). An EKG is a simple, painless test that records the heart's electrical activity. This test also shows whether your heart's rhythm is steady or irregular. An EKG may show whether your right ventricle is enlarged or strained. Right heart catheterization. This procedure measures the pressure in your pulmonary arteries. It also shows how well your heart is pumping blood to the rest of your body. Right heart catheterization (KATH-e-ter-ih-ZA-shun) can find any leaks between the left and right side of the heart. During this procedure, a thin, flexible tube called a catheter is put into a blood vessel in your groin (upper thigh) or neck. The tube is threaded into the right side of your heart and into the pulmonary arteries. Through the tube, your doctor can do tests and treatments on your heart. Tests To Look for the Underlying Cause of Pulmonary Hypertension PH has many causes, so many tests may need to be done to find its underlying cause. Chest CT scan. A chest computed tomography (to-MOG-ra-fee) scan, or chest CT scan, creates pictures of the structures inside your chest, such as your heart, lungs, and blood vessels. These pictures can show signs of PH or a condition that may be causing PH. Chest MRI. Chest magnetic resonance imaging, or chest MRI, shows how your right ventricle is working. The test also shows blood flow in your lungs. Chest MRI also can help detect signs of PH or an underlying condition causing PH. Lung function tests. Lung function tests measure how much air you can breathe in and out, how fast you can breathe air out, and how well your lungs deliver oxygen to your blood. These tests can help detect a lung disease that may be causing PH. Polysomnogram (PSG). This test records brain activity, eye movements, heart rate, and blood pressure while you sleep. A PSG also measures the level of oxygen in your blood. A low oxygen level during sleep is common in PH, and it can make the condition worse. A PSG usually is done while you stay overnight at a sleep center. For more information about this test, go to the Diseases and Conditions Index Sleep Studies article. Lung ventilation/perfusion (VQ) scan. A lung VQ scan measures air and blood flow in your lungs. This test can help detect blood clots in your lung's blood vessels. Blood tests. Blood tests are used to rule out other diseases, such as HIV, liver disease, and autoimmune diseases (such as rheumatoid arthritis). Finding Out the Severity of Pulmonary Hypertension Exercise testing is used to find out the severity of PH. This testing consists of either a 6-minute walk test or a cardiopulmonary exercise test. A 6-minute walk test measures the distance you can quickly walk in 6 minutes. A cardiopulmonary exercise test measures how well your lungs and heart work while you exercise on a treadmill or bicycle. During exercise testing, your doctor will rate your activity level. Your level is linked to the severity of your PH. The rating system ranges from class 1 to class 4. Class 1 has no limits. You can do regular physical activities, such as walking or climbing stairs. These activities don't cause PH symptoms, such as tiredness, shortness of breath, or chest pain. Class 2 has slight or mild limits. You're comfortable while resting, but regular physical activity causes PH symptoms. Class 3 has marked or noticeable limits. You're comfortable while resting. However, walking even one or two blocks or climbing one flight of stairs can cause PH symptoms. Class 4 has severe limits. You're not able to do any physical activity without discomfort. You also may have PH symptoms while at rest. Over time, you may need more exercise tests to find out how well your treatments are working. Each time testing is done, your doctor will compare your activity level with the previous one.
What are the treatments for Pulmonary Hypertension ?
Pulmonary hypertension (PH) has no cure. However, treatment may help relieve symptoms and slow the progress of the disease. PH is treated with medicines, procedures, and other therapies. Treatment will depend on what type of PH you have and its severity. (For more information, go to "Types of Pulmonary Hypertension.") Group 1 Pulmonary Arterial Hypertension Group 1 pulmonary arterial hypertension (PAH) includes PH that's inherited, that has no known cause, or that's caused by certain drugs or conditions. Treatments for group 1 PAH include medicines and medical procedures. Medicines Your doctor may prescribe medicines to relax the blood vessels in your lungs and reduce excess cell growth in the blood vessels. As the blood vessels relax, more blood can flow through them. Your doctor may prescribe medicines that are taken by mouth, inhaled, or injected. Examples of medicines for group 1 PAH include: Phosphodiesterase-5 inhibitors, such as sildenafil Prostanoids, such as epoprostenol Endothelin receptor antagonists, such as bosentan and ambrisentan Calcium channel blockers, such as diltiazem Your doctor may prescribe one or more of these medicines. To find out which of these medicines works best, you'll likely have an acute vasoreactivity test. This test shows how the pressure in your pulmonary arteries reacts to certain medicines. The test is done during right heart catheterization. Medical and Surgical Procedures If you have group 1 PAH, your doctor may recommend one or more of the following procedures. Atrial septostomy (sep-TOS-toe-me). For this procedure, a thin, flexible tube called a catheter is put into a blood vessel in your leg and threaded to your heart. The tube is then put through the wall that separates your right and left atria (the upper chambers of your heart). This wall is called the septum. A tiny balloon on the tip of the tube is inflated. This creates an opening between the atria. This procedure relieves the pressure in the right atria and increases blood flow. Atrial septostomy is rarely done in the United States. Lung transplant. A lung transplant is surgery to replace a person's diseased lung with a healthy lung from a deceased donor. This procedure may be used for people who have severe lung disease that's causing PAH. Heartlung transplant. A heartlung transplant is surgery in which both the heart and lung are replaced with healthy organs from a deceased donor. Group 2 Pulmonary Hypertension Conditions that affect the left side of the heart, such as mitral valve disease, can cause group 2 PH. Treating the underlying condition will help treat PH. Treatments may include lifestyle changes, medicines, and surgery. Group 3 Pulmonary Hypertension Lung diseases, such as COPD (chronic obstructive pulmonary disease) and interstitial lung disease, can cause group 3 PH. Certain sleep disorders, such as sleep apnea, also can cause group 3 PH. If you have this type of PH, you may need oxygen therapy. This treatment raises the level of oxygen in your blood. You'll likely get the oxygen through soft, plastic prongs that fit into your nose. Oxygen therapy can be done at home or in a hospital. Your doctor also may recommend other treatments if you have an underlying lung disease. Group 4 Pulmonary Hypertension Blood clots in the lungs or blood clotting disorders can cause group 4 PH. If you have this type of PH, your doctor will likely prescribe blood-thinning medicines. These medicines prevent clots from forming or getting larger. Sometimes doctors use surgery to remove scarring in the pulmonary arteries due to old blood clots. Group 5 Pulmonary Hypertension Various diseases and conditions, such as thyroid disease and sarcoidosis, can cause group 5 PH. An object, such as a tumor, pressing on the pulmonary arteries also can cause group 5 PH. Group 5 PH is treated by treating its cause. All Types of Pulmonary Hypertension Several treatments may be used for all types of PH. These treatments include: Diuretics, also called water pills. These medicines help reduce fluid buildup in your body, including swelling in your ankles and feet. Blood-thinning medicines. These medicines help prevent blood clots from forming or getting larger. Digoxin. This medicine helps the heart beat stronger and pump more blood. Digoxin sometimes is used to control the heart rate if abnormal heart rhythms, such as atrial fibrillation or atrial flutter, occur. Oxygen therapy. This treatment raises the level of oxygen in your blood. Physical activity. Regular activity may help improve your ability to be active. Talk with your doctor about a physical activity plan that's safe for you. Research is ongoing for better PH treatments. These treatments offer hope for the future.
What is (are) Von Willebrand Disease ?
Von Willebrand disease (VWD) is a bleeding disorder. It affects your blood's ability to clot. If your blood doesn't clot, you can have heavy, hard-to-stop bleeding after an injury. The bleeding can damage your internal organs. Rarely, the bleeding may even cause death. In VWD, you either have low levels of a certain protein in your blood or the protein doesn't work well. The protein is called von Willebrand factor, and it helps your blood clot. Normally, when one of your blood vessels is injured, you start to bleed. Small blood cell fragments called platelets (PLATE-lets) clump together to plug the hole in the blood vessel and stop the bleeding. Von Willebrand factor acts like glue to help the platelets stick together and form a blood clot. Von Willebrand factor also carries clotting factor VIII (8), another important protein that helps your blood clot. Factor VIII is the protein that's missing or doesn't work well in people who have hemophilia, another bleeding disorder. VWD is more common and usually milder than hemophilia. In fact, VWD is the most common inherited bleeding disorder. It occurs in about 1 out of every 100 to 1,000 people. VWD affects both males and females, while hemophilia mainly affects males. Types of von Willebrand Disease The three major types of VWD are called type 1, type 2, and type 3. Type 1 People who have type 1 VWD have low levels of von Willebrand factor and may have low levels of factor VIII. Type 1 is the mildest and most common form of VWD. About 3 out of 4 people who have VWD have type 1. Type 2 In type 2 VWD, the von Willebrand factor doesn't work well. Type 2 is divided into subtypes: 2A, 2B, 2M, and 2N. Different gene mutations (changes) cause each type, and each is treated differently. Thus, it's important to know the exact type of VWD that you have. Type 3 People who have type 3 VWD usually have no von Willebrand factor and low levels of factor VIII. Type 3 is the most serious form of VWD, but it's very rare. Overview Most people who have VWD have type 1, a mild form. This type usually doesn't cause life-threatening bleeding. You may need treatment only if you have surgery, tooth extraction, or trauma. Treatment includes medicines and medical therapies. Some people who have severe forms of VWD need emergency treatment to stop bleeding before it becomes life threatening. Early diagnosis is important. With the proper treatment plan, even people who have type 3 VWD can live normal, active lives.
What causes Von Willebrand Disease ?
Von Willebrand disease (VWD) is almost always inherited. "Inherited" means that the disorder is passed from parents to children though genes. You can inherit type 1 or type 2 VWD if only one of your parents passes the gene on to you. You usually inherit type 3 VWD only if both of your parents pass the gene on to you. Your symptoms may be different from your parents' symptoms. Some people have the genes for the disorder but don't have symptoms. However, they still can pass the genes on to their children. Some people get VWD later in life as a result of other medical conditions. This type of VWD is called acquired von Willebrand syndrome.
What are the symptoms of Von Willebrand Disease ?
The signs and symptoms of von Willebrand disease (VWD) depend on which type of the disorder you have. They also depend on how serious the disorder is. Many people have such mild symptoms that they don't know they have VWD. If you have type 1 or type 2 VWD, you may have the following mild-to-moderate bleeding symptoms: Frequent, large bruises from minor bumps or injuries Frequent or hard-to-stop nosebleeds Prolonged bleeding from the gums after a dental procedure Heavy or prolonged menstrual bleeding in women Blood in your stools from bleeding in your intestines or stomach Blood in your urine from bleeding in your kidneys or bladder Heavy bleeding after a cut or other accident Heavy bleeding after surgery People who have type 3 VWD may have all of the symptoms listed above and severe bleeding episodes for no reason. These bleeding episodes can be fatal if not treated right away. People who have type 3 VWD also may have bleeding into soft tissues or joints, causing severe pain and swelling. Heavy menstrual bleeding often is the main symptom of VWD in women. Doctors call this menorrhagia (men-o-RA-je-ah). They define it as: Bleeding with clots larger than about 1-inch in diameter Anemia (low red blood cell count) or low blood iron The need to change pads or tampons more than every hour However, just because a woman has heavy menstrual bleeding doesn't mean she has VWD.
How to diagnose Von Willebrand Disease ?
Early diagnosis of von Willebrand disease (VWD) is important to make sure that you're treated and can live a normal, active life. Sometimes VWD is hard to diagnose. People who have type 1 or type 2 VWD may not have major bleeding problems. Thus, they may not be diagnosed unless they have heavy bleeding after surgery or some other trauma. On the other hand, type 3 VWD can cause major bleeding problems during infancy and childhood. So, children who have type 3 VWD usually are diagnosed during their first year of life. To find out whether you have VWD, your doctor will review your medical history and the results from a physical exam and tests. Medical History Your doctor will likely ask questions about your medical history and your family's medical history. He or she may ask about: Any bleeding from a small wound that lasted more than 15 minutes or started up again within the first 7 days following the injury. Any prolonged, heavy, or repeated bleeding that required medical care after surgery or dental extractions. Any bruising with little or no apparent trauma, especially if you could feel a lump under the bruise. Any nosebleeds that occurred for no known reason and lasted more than 10 minutes despite pressure on the nose, or any nosebleeds that needed medical attention. Any blood in your stools for no known reason. Any heavy menstrual bleeding (for women). This bleeding usually involves clots or lasts longer than 7 to 10 days. Any history of muscle or joint bleeding. Any medicines you've taken that might cause bleeding or increase the risk of bleeding. Examples include aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs), clopidogrel, warfarin, or heparin. Any history of liver or kidney disease, blood or bone marrow disease, or high or low blood platelet counts. Physical Exam Your doctor will do a physical exam to look for unusual bruising or other signs of recent bleeding. He or she also will look for signs of liver disease or anemia (a low red blood cell count). Diagnostic Tests No single test can diagnose VWD. Your doctor may recommend one or more blood tests to diagnose the disorder. These tests may include: Von Willebrand factor antigen. This test measures the amount of von Willebrand factor in your blood. Von Willebrand factor ristocetin (ris-to-SEE-tin) cofactor activity. This test shows how well your von Willebrand factor works. Factor VIII clotting activity. This test checks the clotting activity of factor VIII. Some people who have VWD have low levels of factor VIII activity, while others have normal levels. Von Willebrand factor multimers. This test is done if one or more of the first three tests are abnormal. It shows the structure of your von Willebrand factor. The test helps your doctor diagnose what type of VWD you have. Platelet function test. This test measures how well your platelets are working. You may have these tests more than once to confirm a diagnosis. Your doctor also may refer you to a hematologist to confirm the diagnosis and for followup care. A hematologist is a doctor who specializes in diagnosing and treating blood disorders.
What are the treatments for Von Willebrand Disease ?
Treatment for von Willebrand disease (VWD) is based on the type of VWD you have and how severe it is. Most cases of VWD are mild, and you may need treatment only if you have surgery, tooth extraction, or an accident. Medicines are used to: Increase the amount of von Willebrand factor and factor VIII released into the bloodstream Replace von Willebrand factor Prevent the breakdown of blood clots Control heavy menstrual bleeding in women Specific Treatments One treatment for VWD is a man-made hormone called desmopressin. You usually take this hormone by injection or nasal spray. It makes your body release more von Willebrand factor and factor VIII into your bloodstream. Desmopressin works for most people who have type 1 VWD and for some people who have type 2 VWD. Another type of treatment is von Willebrand factor replacement therapy. This involves an infusion of concentrated von Willebrand factor and factor VIII into a vein in your arm. This treatment may be used if you: Can't take desmopressin or need extended treatment Have type 1 VWD that doesn't respond to desmopressin Have type 2 or type 3 VWD Antifibrinolytic (AN-te-fi-BRIN-o-LIT-ik) medicines also are used to treat VWD. These medicines help prevent the breakdown of blood clots. They're mostly used to stop bleeding after minor surgery, tooth extraction, or an injury. These medicines may be used alone or with desmopressin and replacement therapy. Fibrin glue is medicine that's placed directly on a wound to stop bleeding. Treatments for Women Treatments for women who have VWD with heavy menstrual bleeding include: Birth control pills. The hormones in these pills can increase the amount of von Willebrand factor and factor VIII in your blood. The hormones also can reduce menstrual blood loss. Birth control pills are the most recommended birth control method for women who have VWD. A levonorgestrel intrauterine device. This is a birth control device that contains the hormone progestin. The device is placed in the uterus (womb). Aminocaproic acid or tranexamic acid. These antifibrinolytic medicines can reduce bleeding by slowing the breakdown of blood clots. Desmopressin. For some women who are done having children or don't want children, endometrial ablation (EN-do-ME-tre-al ab-LA-shun) is done. This procedure destroys the lining of the uterus. It has been shown to reduce menstrual blood loss in women who have VWD. If you need a hysterectomy (HIS-ter-EK-to-me; surgical removal of the uterus) for another reason, this procedure will stop menstrual bleeding and possibly improve your quality of life. However, hysterectomy has its own risk of bleeding complications.
What is (are) Varicose Veins ?
Espaol Varicose (VAR-i-kos) veins are swollen, twisted veins that you can see just under the surface of the skin. These veins usually occur in the legs, but they also can form in other parts of the body. Varicose veins are a common condition. They usually cause few signs and symptoms. Sometimes varicose veins cause mild to moderate pain, blood clots, skin ulcers (sores), or other problems. Overview Veins are blood vessels that carry blood from your body's tissues to your heart. Your heart pumps the blood to your lungs to pick up oxygen. The oxygen-rich blood then is pumped to your body through blood vessels called arteries. From your arteries, the blood flows through tiny blood vessels called capillaries, where it gives up its oxygen to the body's tissues. Your blood then returns to your heart through your veins to pick up more oxygen. For more information about blood flow, go to the Health Topics How the Heart Works article. Veins have one-way valves that help keep blood flowing toward your heart. If the valves are weak or damaged, blood can back up and pool in your veins. This causes the veins to swell, which can lead to varicose veins. Many factors can raise your risk for varicose veins. Examples of these factors include family history, older age, gender, pregnancy, overweight or obesity, lack of movement, and leg trauma. Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment are to relieve symptoms, prevent complications, and improve appearance. Outlook Varicose veins usually don't cause medical problems. If they do, your doctor may simply suggest making lifestyle changes. Sometimes varicose veins cause pain, blood clots, skin ulcers, or other problems. If this happens, your doctor may recommend one or more medical procedures. Some people choose to have these procedures to improve the way their veins look or to relieve pain. Many treatments for varicose veins are quick and easy and don't require a long recovery.
What causes Varicose Veins ?
Weak or damaged valves in the veins can cause varicose veins. After your arteries and capillaries deliver oxygen-rich blood to your body, your veins return the blood to your heart. The veins in your legs must work against gravity to do this. One-way valves inside the veins open to let blood flow through, and then they shut to keep blood from flowing backward. If the valves are weak or damaged, blood can back up and pool in your veins. This causes the veins to swell. Weak vein walls may cause weak valves. Normally, the walls of the veins are elastic (stretchy). If these walls become weak, they lose their normal elasticity. They become like an overstretched rubber band. This makes the walls of the veins longer and wider, and it causes the flaps of the valves to separate. When the valve flaps separate, blood can flow backward through the valves. The backflow of blood fills the veins and stretches the walls even more. As a result, the veins get bigger, swell, and often twist as they try to squeeze into their normal space. These are varicose veins. Normal Vein and Varicose Vein Figure A shows a normal vein with a working valve and normal blood flow. Figure B shows a varicose vein with a deformed valve, abnormal blood flow, and thin, stretched walls. The middle image shows where varicose veins might appear in a leg. Older age or a family history of varicose veins may raise your risk for weak vein walls. You also may be at higher risk if you have increased pressure in your veins due to overweight or obesity or pregnancy.
Who is at risk for Varicose Veins? ?
Many factors may raise your risk for varicose veins, including family history, older age, gender, pregnancy, overweight or obesity, lack of movement, and leg trauma. Family History Having family members who have varicose veins may raise your risk for the condition. About half of all people who have varicose veins have a family history of them. Older Age Getting older may raise your risk for varicose veins. The normal wear and tear of aging may cause the valves in your veins to weaken and not work well. Gender Women tend to get varicose veins more often than men. Hormonal changes that occur during puberty, pregnancy, and menopause (or with the use of birth control pills) may raise a woman's risk for varicose veins. Pregnancy During pregnancy, the growing fetus puts pressure on the veins in the mother's legs. Varicose veins that occur during pregnancy usually get better within 3 to 12 months of delivery. Overweight or Obesity Being overweight or obese can put extra pressure on your veins. This can lead to varicose veins. For more information about overweight and obesity, go to the Health Topics Overweight and Obesity article. Lack of Movement Standing or sitting for a long time, especially with your legs bent or crossed, may raise your risk for varicose veins. This is because staying in one position for a long time may force your veins to work harder to pump blood to your heart. Leg Trauma Previous blood clots or traumatic damage to the valves in your veins can weaken their ability to move blood back to the heart, increasing the risk for varicose veins.
What are the symptoms of Varicose Veins ?
The signs and symptoms of varicose veins include: Large veins that you can see just under the surface of your skin. Mild swelling of your ankles and feet. Painful, achy, or "heavy" legs. Throbbing or cramping in your legs. Itchy legs, especially on the lower leg and ankle. Sometimes this symptom is incorrectly diagnosed as dry skin. Discolored skin in the area around the varicose vein. Signs of telangiectasias are clusters of red veins that you can see just under the surface of your skin. These clusters usually are found on the upper body, including the face. Signs of spider veins are red or blue veins in a web or tree branch pattern. Often, these veins appear on the legs and face. See your doctor if you have these signs and symptoms. They also may be signs of other, more serious conditions. Complications of Varicose Veins Varicose veins can lead to dermatitis (der-ma-TI-tis), an itchy rash. If you have varicose veins in your legs, dermatitis may affect your lower leg or ankle. Dermatitis can cause bleeding or skin ulcers (sores) if the skin is scratched or irritated. Varicose veins also can lead to a condition called superficial thrombophlebitis (THROM-bo-fleh-BI-tis). Thrombophlebitis is a blood clot in a vein. Superficial thrombophlebitis means that the blood clot occurs in a vein close to the surface of the skin. This type of blood clot may cause pain and other problems in the affected area.
How to diagnose Varicose Veins ?
Doctors often diagnose varicose veins based on a physical exam alone. Sometimes tests or procedures are used to find out the extent of the problem or to rule out other conditions. Specialists Involved If you have varicose veins, you may see a vascular medicine specialist or vascular surgeon. These doctors specialize in blood vessel conditions. You also may see a dermatologist. This type of doctor specializes in skin conditions. Physical Exam To check for varicose veins in your legs, your doctor will look at your legs while you're standing or sitting with your legs dangling. He or she may ask you about your signs and symptoms, including any pain you're having. Diagnostic Tests and Procedures Duplex Ultrasound Your doctor may recommend duplex ultrasound to check blood flow in your veins and to look for blood clots. Duplex ultrasound combines traditional with Doppler ultrasound. Traditional ultrasound uses sound waves to create apicture of the structures in your body, in this case the blood vessels and anything that may be blocking the flow of blood. Doppler ultrasound uses sound waves to create pictures of the flow or movement of the blood through theveins. The two types of ultrasound together paint a picture that helps your doctor diagnose your condition. During this test, a handheld device will be placed on your body and passed back and forth over the affected area. The device sends and receives sound waves. A computer will convert the sound waves into a picture of the blood flow in your arteries and veins. Angiogram Although it is not very common, your doctor may recommend an angiogram to get a more detailed look at the blood flow through your veins. For this procedure, dye is injected into your veins. The dye outlines your veins on x-ray images. An angiogram can help your doctor confirm whether you have varicose veins or another condition.
What are the treatments for Varicose Veins ?
Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment are to relieve symptoms, prevent complications, and improve appearance. If varicose veins cause few symptoms, your doctor may simply suggest making lifestyle changes. If your symptoms are more severe, your doctor may recommend one or more medical procedures. For example, you may need a medical procedure if you have a lot of pain, blood clots, or skin disorders caused by your varicose veins. Some people who have varicose veins choose to have procedures to improve how their veins look. Although treatment can help existing varicose veins, it can't keep new varicose veins from forming. Lifestyle Changes Lifestyle changes often are the first treatment for varicose veins. These changes can prevent varicose veins from getting worse, reduce pain, and delay other varicose veins from forming. Lifestyle changes include the following: Avoid standing or sitting for long periods without taking a break. When sitting, avoid crossing your legs. Keep your legs raised when sitting, resting, or sleeping. When you can, raise your legs above the level of your heart. Do physical activities to get your legs moving and improve muscle tone. This helps blood move through your veins. If you're overweight or obese, try to lose weight. This will improve blood flow and ease the pressure on your veins. Avoid wearing tight clothes, especially those that are tight around your waist, groin (upper thighs), and legs. Tight clothes can make varicose veins worse. Avoid wearing high heels for long periods. Lower heeled shoes can help tone your calf muscles. Toned muscles help blood move through the veins. Your doctor may recommend compression stockings. These stockings create gentle pressure up the leg. This pressure keeps blood from pooling and decreases swelling in the legs. There are three types of compression stockings. One type is support pantyhose. These offer the least amount of pressure. A second type is over-the-counter compression hose. These stockings give a little more pressure than support pantyhose. Over-the-counter compression hose are sold in medical supply stores and pharmacies. Prescription-strength compression hose are the third type of compression stockings. These stockings offer the greatest amount of pressure. They also are sold in medical supply stores and pharmacies. However, you need to be fitted for them in the store by a specially trained person. Medical Procedures Medical procedures are done either to remove varicose veins or to close them. Removing or closing varicose veins usually doesn't cause problems with blood flow because the blood starts moving through other veins. You may be treated with one or more of the procedures described below. Common side effects right after most of these procedures include bruising, swelling, skin discoloration, and slight pain. The side effects are most severe with vein stripping and ligation (li-GA-shun). Rarely, this procedure can cause severe pain, infections, blood clots, and scarring. Sclerotherapy Sclerotherapy (SKLER-o-ther-ah-pe) uses a liquid chemical to close off a varicose vein. The chemical is injected into the vein to cause irritation and scarring inside the vein. The irritation and scarring cause the vein to close off, and it fades away. This procedure often is used to treat smaller varicose veins and spider veins. It can be done in your doctor's office, while you stand. You may need several treatments to completely close off a vein. Treatments typically are done every 4 to 6 weeks. Following treatments, your legs will be wrapped in elastic bandaging to help with healing and decrease swelling. Microsclerotherapy Microsclerotherapy (MI-kro-SKLER-o-ther-ah-pe) is used to treat spider veins and other very small varicose veins. A small amount of liquid chemical is injected into a vein using a very fine needle. The chemical scars the inner lining of the vein, causing it to close off. Laser Surgery This procedure applies light energy from a laser onto a varicose vein. The laser light makes the vein fade away. Laser surgery mostly is used to treat smaller varicose veins. No cutting or injection of chemicals is involved. Endovenous Ablation Therapy Endovenous ablation (ab-LA-shun) therapy uses lasers or radiowaves to create heat to close off a varicose vein. Your doctor makes a tiny cut in your skin near the varicose vein. He or she then inserts a small tube called a catheter into the vein. A device at the tip of the tube heats up the inside of the vein and closes it off. You'll be awake during this procedure, but your doctor will numb the area around the vein. You usually can go home the same day as the procedure. Endoscopic Vein Surgery For endoscopic (en-do-SKOP-ik) vein surgery, your doctor will make a small cut in your skin near a varicose vein. He or she then uses a tiny camera at the end of a thin tube to move through the vein. A surgical device at the end of the camera is used to close the vein. Endoscopic vein surgery usually is used only in severe cases when varicose veins are causing skin ulcers (sores). After the procedure, you usually can return to your normal activities within a few weeks. Ambulatory Phlebectomy For ambulatory phlebectomy (fle-BEK-to-me), your doctor will make small cuts in your skin to remove small varicose veins. This procedure usually is done to remove the varicose veins closest to the surface of your skin. You'll be awake during the procedure, but your doctor will numb the area around the vein. Usually, you can go home the same day that the procedure is done. Vein Stripping and Ligation Vein stripping and ligation typically is done only for severe cases of varicose veins. The procedure involves tying shut and removing the veins through small cuts in your skin. You'll be given medicine to temporarily put you to sleep so you don't feel any pain during the procedure. Vein stripping and ligation usually is done as an outpatient procedure. The recovery time from the procedure is about 1 to 4 weeks.
How to prevent Varicose Veins ?
You can't prevent varicose veins from forming. However, you can prevent the ones you have from getting worse. You also can take steps to delay other varicose veins from forming. Avoid standing or sitting for long periods without taking a break. When sitting, avoid crossing your legs. Keep your legs raised when sitting, resting, or sleeping. When you can, raise your legs above the level of your heart. Do physical activities to get your legs moving and improve muscle tone. This helps blood move through your veins. If you're overweight or obese, try to lose weight. This will improve blood flow and ease the pressure on your veins. Avoid wearing tight clothes, especially those that are tight around your waist, groin (upper thighs), and legs. Tight clothes can make varicose veins worse. Avoid wearing high heels for long periods. Lower heeled shoes can help tone your calf muscles. Toned muscles help blood move through the veins. Wear compression stockings if your doctor recommends them. These stockings create gentle pressure up the leg. This pressure keeps blood from pooling in the veins and decreases swelling in the legs.
What is (are) Carotid Artery Disease ?
Carotid artery disease is a disease in which a waxy substance called plaque builds up inside the carotid arteries. You have two common carotid arteries, one on each side of your neck. They each divide into internal and external carotid arteries. The internal carotid arteries supply oxygen-rich blood to your brain. The external carotid arteries supply oxygen-rich blood to your face, scalp, and neck. Carotid Arteries Carotid artery disease is serious because it can cause a stroke, also called a brain attack. A stroke occurs if blood flow to your brain is cut off. If blood flow is cut off for more than a few minutes, the cells in your brain start to die. This impairs the parts of the body that the brain cells control. A stroke can cause lasting brain damage; long-term disability, such as vision or speech problems or paralysis (an inability to move); or death. Overview Carotid artery disease is a major cause of stroke in the United States. Over time, plaque hardens and narrows the arteries. This may limit the flow of oxygen-rich blood to your organs and other parts of your body. Atherosclerosis can affect any artery in the body. For example, if plaque builds up in the coronary (heart) arteries, a heart attack can occur. If plaque builds up in the carotid arteries, a stroke can occur. A stroke also can occur if blood clots form in the carotid arteries. This can happen if the plaque in an artery cracks or ruptures. Blood cell fragments called platelets (PLATE-lets) stick to the site of the injury and may clump together to form blood clots. Blood clots can partly or fully block a carotid artery. A piece of plaque or a blood clot also can break away from the wall of the carotid artery. The plaque or clot can travel through the bloodstream and get stuck in one of the brain's smaller arteries. This can block blood flow in the artery and cause a stroke. Carotid artery disease may not cause signs or symptoms until the carotid arteries are severely narrowed or blocked. For some people, a stroke is the first sign of the disease. Outlook Carotid artery disease is a major cause of stroke in the United States. Other conditions, such as certain heart problems and bleeding in the brain, also can cause strokes.Lifestyle changes, medicines, and medical procedures can help prevent or treat carotid artery disease and may reduce the risk of stroke. If you think you're having a stroke, you need urgent treatment. Call 911 right away if you have symptoms of a stroke. Do not drive yourself to the hospital.You have the best chance for full recovery if treatment to open a blocked artery is given within 4 hours of symptom onset. The sooner treatment occurs, the better your chances of recovery.
What causes Carotid Artery Disease ?
Carotid artery disease seems to start when damage occurs to the inner layers of the carotid arteries. Major factors that contribute to damage include: Smoking High levels of certain fats and cholesterol in the blood High blood pressure High levels of sugar in the blood due to insulin resistance or diabetes When damage occurs, your body starts a healing process. The healing may cause plaque to build up where the arteries are damaged. The plaque in an artery can crack or rupture. If this happens, blood cell fragments called platelets will stick to the site of the injury and may clump together to form blood clots. The buildup of plaque or blood clots can severely narrow or block the carotid arteries. This limits the flow of oxygen-rich blood to your brain, which can cause a stroke.
Who is at risk for Carotid Artery Disease? ?
The major risk factors for carotid artery disease, listed below, also are the major risk factors for coronary heart disease (also called coronary artery disease) and peripheral artery disease. Diabetes. With this disease, the bodys blood sugar level is too high because the body doesnt make enough insulin or doesnt use its insulin properly. People who have diabetes are four times more likely to have carotid artery disease than are people who dont have diabetes. Family history of atherosclerosis. People who have a family history of atherosclerosis are more likely to develop carotid artery disease. High blood pressure (Hypertension). Blood pressure is considered high if it stays at or above 140/90 mmHg over time. If you have diabetes or chronic kidney disease, high blood pressure is defined as 130/80 mmHg or higher. (The mmHg is millimeters of mercurythe units used to measure blood pressure.) Lack of physical activity.Too much sitting (sedentary lifestyle) and a lack of aerobic activity can worsen other risk factors for carotid artery disease, such as unhealthy blood cholesterol levels, high blood pressure, diabetes, and overweight or obesity. Metabolic syndrome. Metabolic syndrome is the name for a group of risk factors that raise your risk for stroke and other health problems, such as diabetes and heart disease. The five metabolic risk factors are a large waistline (abdominal obesity), a high triglyceride level (a type of fat found in the blood), a low HDL cholesterol level, high blood pressure, and high blood sugar. Metabolic syndrome is diagnosed if you have at least three of these metabolic risk factors. Older age. As you age, your risk for atherosclerosis increases. The process of atherosclerosis begins in youth and typically progresses over many decades before diseases develop. Overweight or obesity. The terms overweight and obesity refer to body weight thats greater than what is considered healthy for a certain height. Smoking. Smoking can damage and tighten blood vessels, lead to unhealthy cholesterol levels, and raise blood pressure. Smoking also can limit how much oxygen reaches the bodys tissues. Unhealthy blood cholesterol levels. This includes high LDL (bad) cholesterol) and low HDL (good) cholesterol. Unhealthy diet. An unhealthy diet can raise your risk for carotid artery disease. Foods that are high in saturated and trans fats, cholesterol, sodium, and sugar can worsen other risk factors for carotid artery disease. Having any of these risk factors does not guarantee that youll develop carotid artery disease. However, if you know that you have one or more risk factors, you can take steps to help prevent or delay the disease. If you have plaque buildup in your carotid arteries, you also may have plaque buildup in other arteries. People who have carotid artery disease also are at increased risk for coronary heartdisease.
What are the symptoms of Carotid Artery Disease ?
Carotid artery disease may not cause signs or symptoms until it severely narrows or blocks a carotid artery. Signs and symptoms may include a bruit, a transient ischemic attack(TIA), or a stroke. Bruit During a physical exam, your doctor may listen to your carotid arteries with a stethoscope. He or she may hear a whooshing sound called a bruit. This sound may suggest changed or reduced blood flow due to plaque buildup. To find out more, your doctor may recommend tests. Not all people who have carotid artery disease have bruits. Transient Ischemic Attack (Mini-Stroke) For some people, having a transient ischemic attack (TIA), or mini-stroke, is the first sign of carotid artery disease. During a mini-stroke, you may have some or all of the symptoms of a stroke. However, the symptoms usually go away on their own within 24 hours. Stroke and mini-stroke symptoms may include: A sudden, severe headache with no known cause Dizziness or loss of balance Inability to move one or more of your limbs Sudden trouble seeing in one or both eyes Sudden weakness or numbness in the face or limbs, often on just one side of the body Trouble speaking or understanding speech Even if the symptoms stop quickly, call 911 for emergency help. Do not drive yourself to the hospital. Its important to get checked and to get treatment started as soon as possible. A mini-stroke is a warning sign that youre at high risk of having a stroke. You shouldnt ignore these symptoms. Getting medical care can help find possible causes of a mini-stroke and help you manage risk factors. These actions might prevent a future stroke. Although a mini-stroke may warn of a stroke, it doesnt predict when a stroke will happen. A stroke may occur days, weeks, or even months after a mini-stroke. Stroke The symptoms of a stroke are the same as those of a mini-stroke, but the results are not. A stroke can cause lasting brain damage; long-term disability, such as vision or speech problems or paralysis (an inability to move); or death. Most people who have strokes have not previously had warning mini-strokes. Getting treatment for a stroke right away is very important. You have the best chance for full recovery if treatment to open a blocked artery is given within 4 hours of symptom onset. The sooner treatment occurs, the better your chances of recovery. Call 911 for emergency help as soon as symptoms occur. Do not drive yourself to the hospital. Its very important to get checked and to get treatment started as soon as possible. Make those close to you aware of stroke symptoms and the need for urgent action. Learning the signs and symptoms of a stroke will allow you to help yourself or someone close to you lower the risk of brain damage or death due to a stroke.
How to diagnose Carotid Artery Disease ?
Your doctor will diagnose carotid artery disease based on your medical history, a physical exam, and test results. Medical History Your doctor will find out whether you have any of the major risk factors for carotid artery disease. He or she also will ask whether you've had any signs or symptoms of a mini-stroke or stroke. Physical Exam To check your carotid arteries, your doctor will listen to them with a stethoscope. He or she will listen for a whooshing sound called a bruit. This sound may indicate changed or reduced blood flow due to plaque buildup. To find out more, your doctor may recommend tests. Diagnostic Tests The following tests are common for diagnosing carotid artery disease. If you have symptoms of a mini-stroke or stroke, your doctor may use other tests as well. Carotid Ultrasound Carotid ultrasound (also called sonography) is the most common test for diagnosing carotid artery disease. It's a painless, harmless test that uses sound waves to create pictures of the insides of your carotid arteries. This test can show whether plaque has narrowed your carotid arteries and how narrow they are. A standard carotid ultrasound shows the structure of your carotid arteries. A Doppler carotid ultrasound shows how blood moves through your carotid arteries. Carotid Angiography Carotid angiography (an-jee-OG-ra-fee) is a special type of x ray. This test may be used if the ultrasound results are unclear or don't give your doctor enough information. For this test, your doctor will inject a substance (called contrast dye) into a vein, most often in your leg. The dye travels to your carotid arteries and highlights them on x-ray pictures. Magnetic Resonance Angiography Magnetic resonance angiography (MRA) uses a large magnet and radio waves to take pictures of your carotid arteries. Your doctor can see these pictures on a computer screen. For this test, your doctor may give you contrast dye to highlight your carotid arteries on the pictures. Computed Tomography Angiography Computed tomography (to-MOG-rah-fee) angiography, or CT angiography, takes x-ray pictures of the body from many angles. A computer combines the pictures into two- and three-dimensional images. For this test, your doctor may give you contrast dye to highlight your carotid arteries on the pictures.
What are the treatments for Carotid Artery Disease ?
Treatments for carotid artery disease may include healthy lifestyle changes, medicines, and medical procedures. The goals of treatment are to stop the disease from getting worse and to prevent a stroke. Your treatment will depend on your symptoms, how severe the disease is, and your age and overall health. Heart-Healthy Lifestyle Changes Your doctor may recommend heart-healthy lifestyle changes if you have carotid artery disease. Heart-healthy lifestyle changes include: Heart-healthy eating Maintaining a healthy weight Managing stress Physical activity Quitting smoking Heart-Healthy Eating Your doctor may recommend a heart-healthy eating plan, which should include: Fat-free or low-fat dairy products, such as skim milk Fish high in omega-3 fatty acids, such as salmon, tuna, and trout, about twice a week Fruits, such as apples, bananas, oranges, pears, and prunes Legumes, such as kidney beans, lentils, chickpeas, black-eyed peas, and lima beans Vegetables, such as broccoli, cabbage, and carrots Whole grains, such as oatmeal, brown rice, and corn tortillas When following a heart-healthy diet, you should avoid eating: A lot of red meat Palm and coconut oils Sugary foods and beverages Two nutrients in your diet make blood cholesterol levels rise: Saturated fatfound mostly in foods that come from animals Trans fat (trans fatty acids)found in foods made with hydrogenated oils and fats, such as stick margarine; baked goods, such as cookies, cakes, and pies; crackers; frostings; and coffee creamers. Some trans fats also occur naturally in animal fats andmeats. Saturated fat raises your blood cholesterol more than anything else in your diet. When you follow a heart-healthy eating plan, only 5 percent to 6 percent of your daily calories should come from saturated fat. Food labels list the amounts of saturated fat. To help you stay on track, here are some examples: If you eat: Try to eat no more than: 1,200 calories a day 8 grams of saturated fat a day 1,500 calories a day 10 grams of saturated fat a day 1,800 calories a day 12 grams of saturated fat a day 2,000 calories a day 13 grams of saturated fat a day 2,500 calories a day 17 grams of saturated fat a day Not all fats are bad. Monounsaturated and polyunsaturated fats actually help lower blood cholesterol levels. Some sources of monounsaturated and polyunsaturated fats are: Avocados Corn, sunflower, and soybean oils Nuts and seeds, such as walnuts Olive, canola, peanut, safflower, and sesame oils Peanut butter Salmon and trout Tofu Sodium You should try to limit the amount of sodium that you eat. This means choosing and preparing foods that are lower in salt and sodium. Try to use low-sodium and no added salt foods and seasonings at the table or while cooking. Food labels tell you what you need to know about choosing foods that are lower in sodium. Try to eat no more than 2,300 milligrams of sodium a day. If you have high blood pressure, you may need to restrict your sodium intake even more. Dietary Approaches to Stop Hypertension Your doctor may recommend the Dietary Approaches to Stop Hypertension (DASH) eating plan if you have high blood pressure. The DASH eating plan focuses on fruits, vegetables, whole grains, and other foods that are heart healthy and low in fat, cholesterol, and sodium and salt. The DASH eating plan is a good heart-healthy eating plan, even for those who dont have high blood pressure. Read more about DASH. Alcohol Try to limit alcohol intake. Too much alcohol can raise your blood pressure and triglyceride levels, a type of fat found in the blood. Alcohol also adds extra calories, which may cause weight gain. Men should have no more than two drinks containing alcohol a day. Women should have no more than one drink containing alcohol a day. One drink is: 12 ounces of beer 5 ounces of wine 1 ounces of liquor Maintaining a Healthy Weight Maintaining a healthy weight is important for overall health and can lower your risk for carotid artery disease. Aim for a Healthy Weight by following a heart-healthy eating plan and keeping physically active. Knowing your body mass index (BMI) helps you find out if youre a healthy weight in relation to your height and gives an estimate of your total body fat. To figure out your BMI, check out the National Heart, Lung, and Blood Institutes (NHLBI) online BMI calculator or talk to your doctor. A BMI: Below 18.5 is a sign that you are underweight. Between 18.5 and 24.9 is in the normal range. Between 25 and 29.9 is considered overweight. Of 30 or more is considered obese. A general goal to aim for is a BMI of less than 25. Your doctor or health care provider can help you set an appropriate BMI goal. Measuring waist circumference helps screen for possible health risks. If most of your fat is around your waist rather than at your hips, youre at a higher risk for heart disease and type 2 diabetes. This risk may be high with a waist size that is greater than 35 inches for women or greater than 40 inches for men. To learn how to measure your waist, visit Assessing Your Weight and Health Risk. If youre overweight or obese, try to lose weight. A loss of just 3 percent to 5 percent of your current weight can lower your triglycerides, blood glucose, and the risk of developing type 2 diabetes. Greater amounts of weight loss can improve blood pressure readings, lower LDL cholesterol, and increase HDL cholesterol. Managing Stress Managing and coping with stress. Learning how to manage stress, relax, and cope with problems can improve your emotional and physical health. Consider healthy stress-reducing activities, such as: A stress management program Meditation Physical activity Relaxation therapy Talking things out with friends or family Physical Activity Routine physical activity can lower many risk factors for coronary heart disease, including LDL (bad) cholesterol, high blood pressure, and excess weight. Physical activity also can lower your risk for diabetes and raise your HDL cholesterol level. HDL is the good cholesterol that helps prevent coronary heart disease. Everyone should try to participate in moderate-intensity aerobic exercise at least 2hours and 30minutes per week, or vigorous aerobic exercise for 1hour and 15minutes per week. Aerobic exercise, such as brisk walking, is any exercise in which your heart beats faster and you use more oxygen than usual. The more active you are, the more you will benefit. Participate in aerobic exercise for at least 10minutes at a time spread throughout the week. Read more about physical activity at: Physical Activity and Your Heart U.S. Department of Health and Human Services 2008 Physical Activity Guidelines forAmericans Talk with your doctor before you start a new exercise plan. Ask your doctor how much and what kinds of physical activity are safe for you. Quitting Smoking If you smoke, quit. Smoking can raise your risk for coronary heart disease and heart attack and worsen other coronary heart disease risk factors. Talk with your doctor about programs and products that can help you quit smoking. Also, try to avoid secondhand smoke. If you have trouble quitting smoking on your own, consider joining a support group. Many hospitals, workplaces, and community groups offer classes to help people quit smoking. Read more about quitting smoking at Smoking and Your Heart. Medicines If you have a stroke caused by a blood clot, you may be given a clot-dissolving, or clot-busting, medication. This type of medication must be given within 4 hours of symptom onset. The sooner treatment occurs, the better your chances of recovery. If you think youre having a stroke, call 911 right away for emergency care. Medicines to prevent blood clots are the mainstay treatment for people who have carotid artery disease. They prevent platelets from clumping together and forming blood clots in your carotid arteries, which can lead to a stroke. Two common medications are: Aspirin Clopidogrel Sometimes lifestyle changes alone arent enough to control your cholesterol levels. For example, you also may need statin medications to control or lower your cholesterol. By lowering your blood cholesterol level, you can decrease your chance of having a heart attack or stroke. Doctors usually prescribe statins for people who have: Diabetes Heart disease or have had a stroke High LDL cholesterol levels Doctors may discuss beginning statin treatment with those who have an elevated risk for developing heart disease or having a stroke. You may need other medications to treat diseases and conditions that damage the carotid arteries. Your doctor also may prescribe medications to: Lower your blood pressure. Lower your blood sugar level. Prevent blood clots from forming, which can lead to stroke. Prevent or reduce inflammation. Take all medicines regularly, as your doctor prescribes. Dont change the amount of your medicine or skip a dose unless your doctor tells you to. Your health care team will help find a treatment plan thats right for you. Medical Procedures You may need a medical procedure if you have symptoms caused by the narrowing of the carotid artery. Doctors use one of two methods to open narrowed or blocked carotid arteries: carotid endarterectomy and carotid artery angioplasty and stenting. Carotid Endarterectomy Carotid endarterectomy is mainly for people whose carotid arteries are blocked 50percent ormore. For the procedure, a surgeon will make a cut in your neck to reach the narrowed or blocked carotid artery. Next, he or she will make a cut in the blocked part of the artery and remove the arterys inner lining that is blocking the blood flow. Finally, your surgeon will close the artery with stitches and stop any bleeding. He or she will then close the cut in your neck. Carotid Endarterectomy Carotid Artery Angioplasty and Stenting Doctors use a procedure called angioplasty to widen the carotid arteries and restore blood flow to the brain. A thin tube with a deflated balloon on the end is threaded through a blood vessel in your neck to the narrowed or blocked carotid artery. Once in place, the balloon is inflated to push the plaque outward against the wall of the artery. A stent (a small mesh tube) is then put in the artery to support the inner artery wall. The stent also helps prevent the artery from becoming narrowed or blocked again. Carotid Artery Stenting
How to prevent Carotid Artery Disease ?
Taking action to control your risk factors can help prevent or delay carotid artery disease and stroke. Your risk for carotid artery disease increases with the number of risk factors you have. One step you can take is to adopt a heart-healthy lifestyle, which can include: Heart-Healthy Eating. Following heart-healthy eating is an important part of a healthy lifestyle. Dietary Approaches to Stop Hypertension (DASH)is a program that promotes heart-healthy eating. Maintaining a Healthy Weight. If youre overweight or obese, work with your doctor to create a reasonable plan for weight loss. Controlling your weight helps you control risk factors for carotid arterydisease. Physical Activity. Be as physically active as you can. Physical activity can improve your fitness level and your health. Ask your doctor what types and amounts of activity are safe for you. Read more about Physical Activity and Your Heart. Quit Smoking. If you smoke, quit. Talk with your doctor about programs and products that can help you quit. Other steps that can prevent or delay carotid artery disease include knowing your family history of carotid artery disease. If you or someone in your family has carotid artery disease, be sure to tell your doctor. If lifestyle changes arent enough, your doctor may prescribe medicines to control your carotid artery disease risk factors. Take all of your medicines as your doctor advises.
What is (are) Patent Ductus Arteriosus ?
Patent ductus arteriosus (PDA) is a heart problem that occurs soon after birth in some babies. In PDA, abnormal blood flow occurs between two of the major arteries connected to the heart. Before birth, the two major arteriesthe aorta and the pulmonary (PULL-mun-ary) arteryare connected by a blood vessel called the ductus arteriosus. This vessel is an essential part of fetal blood circulation. Within minutes or up to a few days after birth, the vessel is supposed to close as part of the normal changes occurring in the baby's circulation. In some babies, however, the ductus arteriosus remains open (patent). This opening allows oxygen-rich blood from the aorta to mix with oxygen-poor blood from the pulmonary artery. This can put strain on the heart and increase blood pressure in the lung arteries. Normal Heart and Heart With Patent Ductus Arteriosus Go to the "How the Heart Works" section of this article for more details about how a normal heart works compared with a heart that has PDA. Overview PDA is a type of congenital (kon-JEN-ih-tal) heart defect. A congenital heart defect is any type of heart problem that's present at birth. If your baby has a PDA but an otherwise normal heart, the PDA may shrink and go away. However, some children need treatment to close their PDAs. Some children who have PDAs are given medicine to keep the ductus arteriosus open. For example, this may be done if a child is born with another heart defect that decreases blood flow to the lungs or the rest of the body. Keeping the PDA open helps maintain blood flow and oxygen levels until doctors can do surgery to correct the other heart defect. Outlook PDA is a fairly common congenital heart defect in the United States. Although the condition can affect full-term infants, it's more common in premature infants. On average, PDA occurs in about 8 out of every 1,000 premature babies, compared with 2out of every 1,000 full-term babies. Premature babies also are more vulnerable to the effects of PDA. PDA is twice as common in girls as it is in boys. Doctors treat the condition with medicines, catheter-based procedures, and surgery. Most children who have PDAs live healthy, normal lives after treatment.
What causes Patent Ductus Arteriosus ?
If your child has patent ductus arteriosus (PDA), you may think you did something wrong during your pregnancy to cause the problem. However, the cause of patent ductus arteriosus isn't known. Genetics may play a role in causing the condition. A defect in one or more genes might prevent the ductus arteriosus from closing after birth.
Who is at risk for Patent Ductus Arteriosus? ?
Patent ductus arteriosus (PDA) is a relatively common congenital heart defect in the United States. The condition occurs more often in premature infants (on average, occurring in about 8 of every 1,000 births). However, PDA also occurs in full-term infants (on average, occurring in about 2 of every 1,000 births). PDA also is more common in: Infants who have genetic conditions such as Down syndrome Infants whose mothers had German measles (rubella) during pregnancy PDA is twice as common in girls as it is in boys.
What are the symptoms of Patent Ductus Arteriosus ?
A heart murmur may be the only sign that a baby has patent ductus arteriosus (PDA). A heart murmur is an extra or unusual sound heard during the heartbeat. Heart murmurs also have other causes besides PDA, and most murmurs are harmless. Some infants may develop signs or symptoms of volume overload on the heart and excess blood flow in the lungs. Signs and symptoms may include: Fast breathing, working hard to breathe, or shortness of breath. Premature infants may need increased oxygen or help breathing from a ventilator. Poor feeding and poor weight gain. Tiring easily. Sweating with exertion, such as while feeding.
How to diagnose Patent Ductus Arteriosus ?
In full-term infants, patent ductus arteriosus (PDA) usually is first suspected when the baby's doctor hears a heart murmur during a regular checkup. A heart murmur is an extra or unusual sound heard during the heartbeat. Heart murmurs also have other causes besides PDA, and most murmurs are harmless. If a PDA is large, the infant also may develop symptoms of volume overload and increased blood flow to the lungs. If a PDA is small, it may not be diagnosed until later in childhood. If your child's doctor thinks your child has PDA, he or she may refer you to a pediatric cardiologist. This is a doctor who specializes in diagnosing and treating heart problems in children. Premature babies who have PDA may not have the same signs as full-term babies, such as heart murmurs. Doctors may suspect PDA in premature babies who develop breathing problems soon after birth. Tests can help confirm a diagnosis. Diagnostic Tests Echocardiography Echocardiography (echo) is a painless test that uses sound waves to create a moving picture of your baby's heart. During echo, the sound waves bounce off your childs heart. A computer converts the sound waves into pictures of the hearts structures. The test allows the doctor to clearly see any problems with the way the heart is formed or the way it's working. Echo is the most important test available to your baby's cardiologist to both diagnose a heart problem and follow the problem over time. In babies who have PDA, echo shows how big the PDA is and how well the heart is responding to it. When medical treatments are used to try to close a PDA, echo is used to see how well the treatments are working. EKG (Electrocardiogram) An EKG is a simple, painless test that records the heart's electrical activity. For babies who have PDA, an EKG can show whether the heart is enlarged. The test also can show other subtle changes that can suggest the presence of a PDA.
What are the treatments for Patent Ductus Arteriosus ?
Patent ductus arteriosus (PDA) is treated with medicines, catheter-based procedures, and surgery. The goal of treatment is to close the PDA. Closure will help prevent complications and reverse the effects of increased blood volume. Small PDAs often close without treatment. For full-term infants, treatment is needed if the PDA is large or causing health problems. For premature infants, treatment is needed if the PDA is causing breathing problems or heart problems. Talk with your child's doctor about treatment options and how your family prefers to handle treatment decisions. Medicines Your child's doctor may prescribe medicines to help close your child's PDA. Indomethacin (in-doh-METH-ah-sin) is a medicine that helps close PDAs in premature infants. This medicine triggers the PDA to constrict or tighten, which closes the opening. Indomethacin usually doesn't work in full-term infants. Ibuprofen also is used to close PDAs in premature infants. This medicine is similar to indomethacin. Catheter-Based Procedures Catheters are thin, flexible tubes that doctors use as part of a procedure called cardiac catheterization (KATH-eh-ter-ih-ZA-shun). Catheter-based procedures often are used to close PDAs in infants or children who are large enough to have the procedure. Your child's doctor may refer to the procedure as "transcatheter device closure." The procedure sometimes is used for small PDAs to prevent the risk of infective endocarditis (IE). IE is an infection of the inner lining of the heart chambers and valves. Your child will be given medicine to help him or her relax or sleep during the procedure. The doctor will insert a catheter in a large blood vessel in the groin (upper thigh). He or she will then guide the catheter to your child's heart. A small metal coil or other blocking device is passed through the catheter and placed in the PDA. This device blocks blood flow through the vessel. Catheter-based procedures don't require the child's chest to be opened. They also allow the child to recover quickly. These procedures often are done on an outpatient basis. You'll most likely be able to take your child home the same day the procedure is done. Complications from catheter-based procedures are rare and short term. They can include bleeding, infection, and movement of the blocking device from where it was placed. Surgery Surgery to correct a PDA may be done if: A premature or full-term infant has health problems due to a PDA and is too small to have a catheter-based procedure A catheter-based procedure doesn't successfully close the PDA Surgery is planned for treatment of related congenital heart defects Often, surgery isn't done until after 6 months of age in infants who don't have health problems from their PDAs. Doctors sometimes do surgery on small PDAs to prevent the risk of IE. For the surgery, your child will be given medicine so that he or she will sleep and not feel any pain. The surgeon will make a small incision (cut) between your child's ribs to reach the PDA. He or she will close the PDA using stitches or clips. Complications from surgery are rare and usually short term. They can include hoarseness, a paralyzed diaphragm (the muscle below the lungs), infection, bleeding, or fluid buildup around the lungs. After Surgery After surgery, your child will spend a few days in the hospital. He or she will be given medicine to reduce pain and anxiety. Most children go home 2 days after surgery. Premature infants usually have to stay in the hospital longer because of their other health issues. The doctors and nurses at the hospital will teach you how to care for your child at home. They will talk to you about: Limits on activity for your child while he or she recovers Followup appointments with your child's doctors How to give your child medicines at home, if needed When your child goes home after surgery, you can expect that he or she will feel fairly comfortable. However, you child may have some short-term pain. Your child should begin to eat better and gain weight quickly. Within a few weeks, he or she should fully recover and be able to take part in normal activities. Long-term complications from surgery are rare. However, they can include narrowing of the aorta, incomplete closure of the PDA, and reopening of the PDA.
What is (are) Respiratory Failure ?
Respiratory (RES-pih-rah-tor-e) failure is a condition in which not enough oxygen passes from your lungs into your blood. Your body's organs, such as your heart and brain, need oxygen-rich blood to work well. Respiratory failure also can occur if your lungs can't properly remove carbon dioxide (a waste gas) from your blood. Too much carbon dioxide in your blood can harm your body's organs. Both of these problemsa low oxygen level and a high carbon dioxide level in the bloodcan occur at the same time. Diseases and conditions that affect your breathing can cause respiratory failure. Examples include COPD (chronic obstructive pulmonary disease) and spinal cord injuries. COPD prevents enough air from flowing in and out of the airways. Spinal cord injuries can damage the nerves that control breathing. Overview To understand respiratory failure, it helps to understand how the lungs work. When you breathe, air passes through your nose and mouth into your windpipe. The air then travels to your lungs' air sacs. These sacs are called alveoli (al-VEE-uhl-eye). Small blood vessels called capillaries run through the walls of the air sacs. When air reaches the air sacs, the oxygen in the air passes through the air sac walls into the blood in the capillaries. At the same time, carbon dioxide moves from the capillaries into the air sacs. This process is called gas exchange. In respiratory failure, gas exchange is impaired. Respiratory failure can be acute (short term) or chronic (ongoing). Acute respiratory failure can develop quickly and may require emergency treatment. Chronic respiratory failure develops more slowly and lasts longer. Signs and symptoms of respiratory failure may include shortness of breath, rapid breathing, and air hunger (feeling like you can't breathe in enough air). In severe cases, signs and symptoms may include a bluish color on your skin, lips, and fingernails; confusion; and sleepiness. One of the main goals of treating respiratory failure is to get oxygen to your lungs and other organs and remove carbon dioxide from your body. Another goal is to treat the underlying cause of the condition. Acute respiratory failure usually is treated in an intensive care unit. Chronic respiratory failure can be treated at home or at a long-term care center. Outlook The outlook for respiratory failure depends on the severity of its underlying cause, how quickly treatment begins, and your overall health. People who have severe lung diseases may need long-term or ongoing breathing support, such as oxygen therapy or the help of a ventilator (VEN-til-a-tor). A ventilator is a machine that supports breathing. It blows airor air with increased amounts of oxygeninto your airways and then your lungs.
What causes Respiratory Failure ?
Diseases and conditions that impair breathing can cause respiratory failure. These disorders may affect the muscles, nerves, bones, or tissues that support breathing, or they may affect the lungs directly. When breathing is impaired, your lungs can't easily move oxygen into your blood and remove carbon dioxide from your blood (gas exchange). This can cause a low oxygen level or high carbon dioxide level, or both, in your blood. Respiratory failure can occur as a result of: Conditions that affect the nerves and muscles that control breathing. Examples include muscular dystrophy, amyotrophic lateral sclerosis (ALS), spinal cord injuries, and stroke. Damage to the tissues and ribs around the lungs. An injury to the chest can cause this damage. Problems with the spine, such as scoliosis (a curve in the spine). This condition can affect the bones and muscles used for breathing. Drug or alcohol overdose. An overdose affects the area of the brain that controls breathing. During an overdose, breathing becomes slow and shallow. Lung diseases and conditions, such as COPD (chronic obstructive pulmonary disease), pneumonia, ARDS (acute respiratory distress syndrome), pulmonary embolism, and cystic fibrosis. These diseases and conditions can affect the flow of air and blood into and out of your lungs. ARDS and pneumonia affect gas exchange in the air sacs. Acute lung injuries. For example, inhaling harmful fumes or smoke can injure your lungs. Normal Lungs and Conditions Causing Respiratory Failure
Who is at risk for Respiratory Failure? ?
People who have diseases or conditions that affect the muscles, nerves, bones, or tissues that support breathing are at risk for respiratory failure. People who have lung diseases or conditions also are at risk for respiratory failure. For more information, go to "What Causes Respiratory Failure?"
What are the symptoms of Respiratory Failure ?
The signs and symptoms of respiratory failure depend on its underlying cause and the levels of oxygen and carbon dioxide in the blood. A low oxygen level in the blood can cause shortness of breath and air hunger (feeling like you can't breathe in enough air). If the level of oxygen is very low, it also can cause a bluish color on the skin, lips, and fingernails. A high carbon dioxide level can cause rapid breathing and confusion. Some people who have respiratory failure may become very sleepy or lose consciousness. They also may develop arrhythmias (ah-RITH-me-ahs), or irregular heartbeats. These symptoms can occur if the brain and heart are not getting enough oxygen.
How to diagnose Respiratory Failure ?
Your doctor will diagnose respiratory failure based on your medical history, a physical exam, and test results. Once respiratory failure is diagnosed, your doctor will look for its underlying cause. Medical History Your doctor will ask whether you might have or have recently had diseases or conditions that could lead to respiratory failure. Examples include disorders that affect the muscles, nerves, bones, or tissues that support breathing. Lung diseases and conditions also can cause respiratory failure. For more information, go to "What Causes Respiratory Failure?" Physical Exam During the physical exam, your doctor will look for signs of respiratory failure and its underlying cause. Respiratory failure can cause shortness of breath, rapid breathing, and air hunger (feeling like you can't breathe in enough air). Using a stethoscope, your doctor can listen to your lungs for abnormal sounds, such as crackling. Your doctor also may listen to your heart for signs of an arrhythmia (irregular heartbeat). An arrhythmia can occur if your heart doesn't get enough oxygen. Your doctor might look for a bluish color on your skin, lips, and fingernails. A bluish color means your blood has a low oxygen level. Respiratory failure also can cause extreme sleepiness and confusion, so your doctor might check how alert you are. Diagnostic Tests To check the oxygen and carbon dioxide levels in your blood, you may have: Pulse oximetry. For this test, a small sensor is attached to your finger or ear. The sensor uses light to estimate how much oxygen is in your blood. Arterial blood gas test. This test measures the oxygen and carbon dioxide levels in your blood. A blood sample is taken from an artery, usually in your wrist. The sample is then sent to a laboratory, where its oxygen and carbon dioxide levels are measured. A low level of oxygen or a high level of carbon dioxide in the blood (or both) is a possible sign of respiratory failure. Your doctor may recommend other tests, such as a chest x ray, to help find the underlying cause of respiratory failure. A chest x ray is a painless test that takes pictures of the structures inside your chest, such as your heart, lungs, and blood vessels. If your doctor thinks that you have an arrhythmia as a result of respiratory failure, he or she may recommend an EKG (electrocardiogram). An EKG is a simple, painless test that detects and records the heart's electrical activity.
What are the treatments for Respiratory Failure ?
Treatment for respiratory failure depends on whether the condition is acute (short-term) or chronic (ongoing) and its severity. Treatment also depends on the condition's underlying cause. Acute respiratory failure can be a medical emergency. It often is treated in an intensive care unit at a hospital. Chronic respiratory failure often can be treated at home. If chronic respiratory failure is severe, your doctor may recommend treatment in a long-term care center. One of the main goals of treating respiratory failure is to get oxygen to your lungs and other organs and remove carbon dioxide from your body. Another goal is to treat the underlying cause of the condition. Oxygen Therapy and Ventilator Support If you have respiratory failure, you may receive oxygen therapy. Extra oxygen is given through a nasal cannula (two small plastic tubes, or prongs, that are placed in both nostrils) or through a mask that fits over your nose and mouth. Oxygen Therapy Oxygen also can be given through a tracheostomy (TRA-ke-OS-to-me). This is a surgically made hole that goes through the front of your neck and into your windpipe. A breathing tube, also called a tracheostomy or trach tube, is placed in the hole to help you breathe. Tracheostomy If the oxygen level in your blood doesn't increase, or if you're still having trouble breathing, your doctor may recommend a ventilator. A ventilator is a machine that supports breathing. It blows airor air with increased amounts of oxygeninto your airways and then your lungs. Ventilator Your doctor will adjust the ventilator as needed. This will help your lungs get the right amount of oxygen. It also can prevent the machine's pressure from injuring your lungs. You'll use the ventilator until you can breathe on your own. Other Treatments To Help You Breathe Noninvasive positive pressure ventilation (NPPV) and a rocking bed are two methods that can help you breathe better while you sleep. These methods are very useful for people who have chronic respiratory failure. NPPV is a treatment that uses mild air pressure to keep your airways open while you sleep. You wear a mask or other device that fits over your nose or your nose and mouth. A tube connects the mask to a machine, which blows air into the tube. CPAP (continuous positive airway pressure) is one type of NPPV. For more information, go to the Health Topics CPAP article. Although the article focuses on CPAP treatment for sleep apnea, it explains how CPAP works. A rocking bed consists of a mattress on a motorized platform. The mattress gently rocks back and forth. When your head rocks down, the organs in your abdomen and your diaphragm (the main muscle used for breathing) slide up, helping you exhale. When your head rocks up, the organs in your abdomen and your diaphragm slide down, helping you inhale. Fluids You may be given fluids to improve blood flow throughout your body and to provide nutrition. Your doctor will make sure you get the right amount of fluids. Too much fluid can fill the lungs and make it hard for you to get the oxygen you need. Not enough fluid can limit the flow of oxygen-rich blood to the body's organs. Fluids usually are given through an intravenous (IV) line inserted in one of your blood vessels. Medicines Your doctor may prescribe medicines to relieve discomfort. Treatments for the Underlying Cause of Respiratory Failure Once your doctor figures out what's causing your respiratory failure, he or she will plan how to treat that disease or condition. Treatments may include medicines, procedures, and other therapies.
What is (are) Antiphospholipid Antibody Syndrome ?
Antiphospholipid (AN-te-fos-fo-LIP-id) antibody syndrome (APS) is an autoimmune disorder. Autoimmune disorders occur if the body's immune system makes antibodies that attack and damage tissues or cells. Antibodies are a type of protein. They usually help defend the body against infections. In APS, however, the body makes antibodies that mistakenly attack phospholipidsa type of fat. Phospholipids are found in all living cells and cell membranes, including blood cells and the lining of blood vessels. When antibodies attack phospholipids, cells are damaged. This damage causes blood clots to form in the body's arteries and veins. (These are the vessels that carry blood to your heart and body.) Usually, blood clotting is a normal bodily process. Blood clots help seal small cuts or breaks on blood vessel walls. This prevents you from losing too much blood. In APS, however, too much blood clotting can block blood flow and damage the body's organs. Overview Some people have APS antibodies, but don't ever have signs or symptoms of the disorder. Having APS antibodies doesn't mean that you have APS. To be diagnosed with APS, you must have APS antibodies and a history of health problems related to the disorder. APS can lead to many health problems, such as stroke, heart attack, kidney damage, deep vein thrombosis (throm-BO-sis), and pulmonary embolism (PULL-mun-ary EM-bo-lizm). APS also can cause pregnancy-related problems, such as multiple miscarriages, a miscarriage late in pregnancy, or a premature birth due to eclampsia (ek-LAMP-se-ah). (Eclampsia, which follows preeclampsia, is a serious condition that causes seizures in pregnant women.) Very rarely, some people who have APS develop many blood clots within weeks or months. This condition is called catastrophic antiphospholipid syndrome (CAPS). People who have APS also are at higher risk for thrombocytopenia (THROM-bo-si-to-PE-ne-ah). This is a condition in which your blood has a lower than normal number of blood cell fragments called platelets (PLATE-lets). Antibodies destroy the platelets, or theyre used up during the clotting process. Mild to serious bleeding can occur with thrombocytopenia. APS can be fatal. Death may occur as a result of large blood clots or blood clots in the heart, lungs, or brain. Outlook APS can affect people of any age. However, it's more common in women and people who have other autoimmune or rheumatic (ru-MAT-ik) disorders, such as lupus. ("Rheumatic" refers to disorders that affect the joints, bones, or muscles.) APS has no cure, but medicines can help prevent its complications. Medicines are used to stop blood clots from forming. They also are used to keep existing clots from getting larger. Treatment for APS is long term. If you have APS and another autoimmune disorder, it's important to control that condition as well. When the other condition is controlled, APS may cause fewer problems.
What causes Antiphospholipid Antibody Syndrome ?
Antiphospholipid antibody syndrome (APS) occurs if the body's immune system makes antibodies (proteins) that attack phospholipids. Phospholipids are a type of fat found in all living cells and cell membranes, including blood cells and the lining of blood vessels. What causes the immune system to make antibodies against phospholipids isn't known. APS causes unwanted blood clots to form in the body's arteries and veins. Usually, blood clotting is a normal bodily process. It helps seal small cuts or breaks on blood vessel walls. This prevents you from losing too much blood. In APS, however, too much blood clotting can block blood flow and damage the body's organs. Researchers don't know why APS antibodies cause blood clots to form. Some believe that the antibodies damage or affect the inner lining of the blood vessels, which causes blood clots to form. Others believe that the immune system makes antibodies in response to blood clots damaging the blood vessels.
Who is at risk for Antiphospholipid Antibody Syndrome? ?
Antiphospholipid antibody syndrome (APS) can affect people of any age. The disorder is more common in women than men, but it affects both sexes. APS also is more common in people who have other autoimmune or rheumatic disorders, such as lupus. ("Rheumatic" refers to disorders that affect the joints, bones, or muscles.) About 10 percent of all people who have lupus also have APS. About half of all people who have APS also have another autoimmune or rheumatic disorder. Some people have APS antibodies, but don't ever have signs or symptoms of the disorder. The mere presence of APS antibodies doesn't mean that you have APS. To be diagnosed with APS, you must have APS antibodies and a history of health problems related to the disorder. However, people who have APS antibodies but no signs or symptoms are at risk of developing APS. Health problems, other than autoimmune disorders, that can trigger blood clots include: Smoking Prolonged bed rest Pregnancy and the postpartum period Birth control pills and hormone therapy Cancer and kidney disease
What are the symptoms of Antiphospholipid Antibody Syndrome ?
The signs and symptoms of antiphospholipid antibody syndrome (APS) are related to abnormal blood clotting. The outcome of a blood clot depends on its size and location. Blood clots can form in, or travel to, the arteries or veins in the brain, heart, kidneys, lungs, and limbs. Clots can reduce or block blood flow. This can damage the body's organs and may cause death. Major Signs and Symptoms Major signs and symptoms of blood clots include: Chest pain and shortness of breath Pain, redness, warmth, and swelling in the limbs Ongoing headaches Speech changes Upper body discomfort in the arms, back, neck, and jaw Nausea (feeling sick to your stomach) Blood clots can lead to stroke, heart attack, kidney damage, deep vein thrombosis, and pulmonary embolism. Pregnant women who have APS can have successful pregnancies. However, they're at higher risk for miscarriages, stillbirths, and other pregnancy-related problems, such as preeclampsia (pre-e-KLAMP-se-ah). Preeclampsia is high blood pressure that occurs during pregnancy. This condition may progress to eclampsia. Eclampsia is a serious condition that causes seizures in pregnant women. Some people who have APS may develop thrombocytopenia. This is a condition in which your blood has a lower than normal number of blood cell fragments called platelets. Mild to serious bleeding causes the main signs and symptoms of thrombocytopenia. Bleeding can occur inside the body (internal bleeding) or underneath or from the skin (external bleeding). Other Signs and Symptoms Other signs and symptoms of APS include chronic (ongoing) headaches, memory loss, and heart valve problems. Some people who have APS also get a lacy-looking red rash on their wrists and knees.
How to diagnose Antiphospholipid Antibody Syndrome ?
Your doctor will diagnose antiphospholipid antibody syndrome (APS) based on your medical history and the results from blood tests. Specialists Involved A hematologist often is involved in the care of people who have APS. This is a doctor who specializes in diagnosing and treating blood diseases and disorders. You may have APS and another autoimmune disorder, such as lupus. If so, a doctor who specializes in that disorder also may provide treatment. Many autoimmune disorders that occur with APS also affect the joints, bones, or muscles. Rheumatologists specialize in treating these types of disorders. Medical History Some people have APS antibodies but no signs or symptoms of the disorder. Having APS antibodies doesn't mean that you have APS. To be diagnosed with APS, you must have APS antibodies and a history of health problems related to the disorder. APS can lead to many health problems, including stroke, heart attack, kidney damage, deep vein thrombosis, and pulmonary embolism. APS also can cause pregnancy-related problems, such as multiple miscarriages, a miscarriage late in pregnancy, or a premature birth due to eclampsia. (Eclampsia, which follows preeclampsia, is a serious condition that causes seizures in pregnant women.) Blood Tests Your doctor can use blood tests to confirm a diagnosis of APS. These tests check your blood for any of the three APS antibodies: anticardiolipin, beta-2 glycoprotein I (2GPI), and lupus anticoagulant. The term "anticoagulant" (AN-te-ko-AG-u-lant) refers to a substance that prevents blood clotting. It may seem odd that one of the APS antibodies is called lupus anticoagulant. The reason for this is because the antibody slows clotting in lab tests. However, in the human body, it increases the risk of blood clotting. To test for APS antibodies, a small blood sample is taken. It's often drawn from a vein in your arm using a needle. The procedure usually is quick and easy, but it may cause some short-term discomfort and a slight bruise. You may need a second blood test to confirm positive results. This is because a single positive test can result from a short-term infection. The second blood test often is done 12 weeks or more after the first one.
What are the treatments for Antiphospholipid Antibody Syndrome ?
Antiphospholipid antibody syndrome (APS) has no cure. However, medicines can help prevent complications. The goals of treatment are to prevent blood clots from forming and keep existing clots from getting larger. You may have APS and another autoimmune disorder, such as lupus. If so, it's important to control that condition as well. When the other condition is controlled, APS may cause fewer problems. Research is ongoing for new ways to treat APS. Medicines Anticoagulants, or "blood thinners," are used to stop blood clots from forming. They also may keep existing blood clots from getting larger. These medicines are taken as either a pill, an injection under the skin, or through a needle or tube inserted into a vein (called intravenous, or IV, injection). Warfarin and heparin are two blood thinners used to treat APS. Warfarin is given in pill form. (Coumadin is a common brand name for warfarin.) Heparin is given as an injection or through an IV tube. There are different types of heparin. Your doctor will discuss the options with you. Your doctor may treat you with both heparin and warfarin at the same time. Heparin acts quickly. Warfarin takes 2 to 3 days before it starts to work. Once the warfarin starts to work, the heparin is stopped. Aspirin also thins the blood and helps prevent blood clots. Sometimes aspirin is used with warfarin. Other times, aspirin might be used alone. Blood thinners don't prevent APS. They simply reduce the risk of further blood clotting. Treatment with these medicines is long term. Discuss all treatment options with your doctor. Side Effects The most common side effect of blood thinners is bleeding. This happens if the medicine thins your blood too much. This side effect can be life threatening. Sometimes the bleeding is internal (inside your body). People treated with blood thinners usually need regular blood tests, called PT and PTT tests, to check how well their blood is clotting. These tests also show whether you're taking the right amount of medicine. Your doctor will check to make sure that you're taking enough medicine to prevent clots, but not so much that it causes bleeding. Talk with your doctor about the warning signs of internal bleeding and when to seek emergency care. (For more information, go to "Living With Antiphospholipid Antibody Syndrome.") Treatment During Pregnancy Pregnant women who have APS can have successful pregnancies. With proper treatment, these women are more likely to carry their babies to term. Pregnant women who have APS usually are treated with heparin or heparin and low-dose aspirin. Warfarin is not used as a treatment during pregnancy because it can harm the fetus. Babies whose mothers have APS are at higher risk for slowed growth while in the womb. If you're pregnant and have APS, you may need to have extra ultrasound tests (sonograms) to check your babys growth. An ultrasound test uses sound waves to look at the growing fetus. Treatment for Other Medical Conditions People who have APS are at increased risk for thrombocytopenia. This is a condition in which your blood has a lower than normal number of blood cell fragments called platelets. Platelets help the blood clot. If you have APS, you'll need regular complete blood counts (a type of blood test) to count the number of platelets in your blood. Thrombocytopenia is treated with medicines and medical procedures. For more information, go to the Health Topics Thrombocytopenia article. If you have other health problems, such as heart disease or diabetes, work with your doctor to manage them.
What is (are) Diabetic Heart Disease ?
The term "diabetic heart disease" (DHD) refers to heart disease that develops in people who have diabetes. Compared with people who don't have diabetes, people who have diabetes: Are at higher risk for heart disease Have additional causes of heart disease May develop heart disease at a younger age May have more severe heart disease What Is Diabetes? Diabetes is a disease in which the body's blood glucose (sugar) level is too high. Normally, the body breaks down food into glucose and carries it to cells throughout the body. The cells use a hormone called insulin to turn the glucose into energy. The two main types of diabetes are type 1 and type 2. In type 1 diabetes, the body doesn't make enough insulin. This causes the body's blood sugar level to rise. In type 2 diabetes, the body's cells don't use insulin properly (a condition called insulin resistance). At first, the body reacts by making more insulin. Over time, though, the body can't make enough insulin to control its blood sugar level. For more information about diabetes, go to the National Institute of Diabetes and Digestive and Kidney Diseases' Introduction to Diabetes Web page. What Heart Diseases Are Involved in Diabetic Heart Disease? DHD may include coronary heart disease (CHD), heart failure, and/or diabetic cardiomyopathy (KAR-de-o-mi-OP-ah-thee). Coronary Heart Disease In CHD, a waxy substance called plaque (plak) builds up inside the coronary arteries. These arteries supply your heart muscle with oxygen-rich blood. Plaque is made up of fat, cholesterol, calcium, and other substances found in the blood. When plaque builds up in the arteries, the condition is called atherosclerosis (ATH-er-o-skler-O-sis). Plaque narrows the coronary arteries and reduces blood flow to your heart muscle. The buildup of plaque also makes it more likely that blood clots will form in your arteries. Blood clots can partially or completely block blood flow. CHD can lead to chest pain or discomfort called angina (an-JI-nuh or AN-juh-nuh), irregular heartbeats called arrhythmias (ah-RITH-me-ahs), a heart attack, or even death. Heart Failure Heart failure is a condition in which your heart can't pump enough blood to meet your body's needs. The term heart failure doesn't mean that your heart has stopped or is about to stop working. However, heart failure is a serious condition that requires medical care. If you have heart failure, you may tire easily and have to limit your activities. CHD can lead to heart failure by weakening the heart muscle over time. Diabetic Cardiomyopathy Diabetic cardiomyopathy is a disease that damages the structure and function of the heart. This disease can lead to heart failure and arrhythmias, even in people who have diabetes but don't have CHD. Overview People who have type 1 or type 2 diabetes can develop DHD. The higher a person's blood sugar level is, the higher his or her risk of DHD. Diabetes affects heart disease risk in three major ways. First, diabetes alone is a very serious risk factor for heart disease, just like smoking, high blood pressure, and high blood cholesterol. In fact, people who have type 2 diabetes have the same risk of heart attack and dying from heart disease as people who already have had heart attacks. Second, when combined with other risk factors, diabetes further raises the risk of heart disease. Although research is ongoing, it's clear that diabetes and other conditionssuch as overweight and obesity and metabolic syndromeinteract to cause harmful physical changes to the heart. Third, diabetes raises the risk of earlier and more severe heart problems. Also, people who have DHD tend to have less success with some heart disease treatments, such as coronary artery bypass grafting and percutaneous coronary intervention,also known as coronary angioplasty. Outlook If you have diabetes, you can lower your risk of DHD. Making lifestyle changes and taking prescribed medicines can help you prevent or control many risk factors. Taking action to manage multiple risk factors helps improve your outlook. The good news is that many lifestyle changes help control multiple risk factors. For example, physical activity can lower your blood pressure, help control your blood sugar level and your weight, and reduce stress. It's also very important to follow your treatment plan for diabetes and see your doctor for ongoing care. If you already have DHD, follow your treatment plan as your doctors advises. This may help you avoid or delay serious problems, such as a heart attack or heart failure.
What causes Diabetic Heart Disease ?
At least four complex processes, alone or combined, can lead to diabetic heart disease (DHD). They include coronary atherosclerosis; metabolic syndrome; insulin resistance in people who have type 2 diabetes; and the interaction of coronary heart disease (CHD), high blood pressure, and diabetes. Researchers continue to study these processes because all of the details aren't yet known. Coronary Atherosclerosis Atherosclerosis is a disease in which plaque builds up inside the arteries. The exact cause of atherosclerosis isn't known. However, studies show that it is a slow, complex disease that may start in childhood. The disease develops faster as you age. Coronary atherosclerosis may start when certain factors damage the inner layers of the coronary (heart) arteries. These factors include: Smoking High amounts of certain fats and cholesterol in the blood High blood pressure High amounts of sugar in the blood due to insulin resistance or diabetes Plaque may begin to build up where the arteries are damaged. Over time, plaque hardens and narrows the arteries. This reduces the flow of oxygen-rich blood to your heart muscle. Eventually, an area of plaque can rupture (break open). When this happens, blood cell fragments called platelets (PLATE-lets) stick to the site of the injury. They may clump together to form blood clots. Blood clots narrow the coronary arteries even more. This limits the flow of oxygen-rich blood to your heart and may worsen angina (chest pain) or cause a heart attack. Metabolic Syndrome Metabolic syndrome is the name for a group of risk factors that raises your risk of both CHD and type 2 diabetes. If you have three or more of the five metabolic risk factors, you have metabolic syndrome. The risk factors are: A large waistline (a waist measurement of 35 inches or more for women and 40 inches or more for men). A high triglyceride (tri-GLIH-seh-ride) level (or youre on medicine to treat high triglycerides). Triglycerides are a type of fat found in the blood. A low HDL cholesterol level (or you're on medicine to treat low HDL cholesterol). HDL sometimes is called "good" cholesterol. This is because it helps remove cholesterol from your arteries. High blood pressure (or youre on medicine to treat high blood pressure). A high fasting blood sugar level (or you're on medicine to treat high blood sugar). It's unclear whether these risk factors have a common cause or are mainly related by their combined effects on the heart. Obesity seems to set the stage for metabolic syndrome. Obesity can cause harmful changes in body fats and how the body uses insulin. Chronic (ongoing) inflammation also may occur in people who have metabolic syndrome. Inflammation is the body's response to illness or injury. It may raise your risk of CHD and heart attack. Inflammation also may contribute to or worsen metabolic syndrome. Research is ongoing to learn more about metabolic syndrome and how metabolic risk factors interact. Insulin Resistance in People Who Have Type 2 Diabetes Type 2 diabetes usually begins with insulin resistance. Insulin resistance means that the body can't properly use the insulin it makes. People who have type 2 diabetes and insulin resistance have higher levels of substances in the blood that cause blood clots. Blood clots can block the coronary arteries and cause a heart attack or even death. The Interaction of Coronary Heart Disease, High Blood Pressure, and Diabetes Each of these risk factors alone can damage the heart. CHD reduces the flow of oxygen-rich blood to your heart muscle. High blood pressure and diabetes may cause harmful changes in the structure and function of the heart. Having CHD, high blood pressure, and diabetes is even more harmful to the heart. Together, these conditions can severely damage the heart muscle. As a result, the heart has to work harder than normal. Over time, the heart weakens and isnt able to pump enough blood to meet the bodys needs. This condition is called heart failure. As the heart weakens, the body may release proteins and other substances into the blood. These proteins and substances also can harm the heart and worsen heart failure.
Who is at risk for Diabetic Heart Disease? ?
People who have type 1 or type 2 diabetes are at risk for diabetic heart disease (DHD). Diabetes affects heart disease risk in three major ways. First, diabetes alone is a very serious risk factor for heart disease. Second, when combined with other risk factors, diabetes further raises the risk of heart disease. Third, compared with people who don't have diabetes, people who have the disease are more likely to: Have heart attacks and other heart and blood vessel diseases. In men, the risk is double; in women, the risk is triple. Have more complications after a heart attack, such as angina (chest pain or discomfort) and heart failure. Die from heart disease. The higher your blood sugar level is, the higher your risk of DHD. (A higher than normal blood sugar level is a risk factor for heart disease even in people who don't have diabetes.) Type 2 diabetes raises your risk of having silent heart diseasethat is, heart disease with no signs or symptoms. You can even have a heart attack without feeling symptoms. Diabetes-related nerve damage that blunts heart pain may explain why symptoms aren't noticed. Other Risk Factors Other factors also can raise the risk of coronary heart disease (CHD) in people who have diabetes and in those who don't. You can control most of these risk factors, but some you can't. For a more detailed discussion of these risk factors, go to the Health Topics Coronary Heart Disease Risk Factors article. Risk Factors You Can Control Unhealthy blood cholesterol levels. This includes high LDL cholesterol (sometimes called "bad" cholesterol) and low HDL cholesterol (sometimes called "good" cholesterol). High blood pressure. Blood pressure is considered high if it stays at or above 140/90 mmHg over time. If you have diabetes or chronic kidney disease, high blood pressure is defined as 130/80 mmHg or higher. (The mmHg is millimeters of mercurythe units used to measure blood pressure.) Smoking. Smoking can damage and tighten blood vessels, lead to unhealthy cholesterol levels, and raise blood pressure. Smoking also can limit how much oxygen reaches the body's tissues. Prediabetes. This is a condition in which your blood sugar level is higher than normal, but not as high as it is in diabetes. If you have prediabetes and don't take steps to manage it, you'll likely develop type 2 diabetes within 10 years. Overweight or obesity. Being overweight or obese raises your risk of heart disease and heart attack. Overweight and obesity also are linked to other heart disease risk factors, such as high blood cholesterol, high blood pressure, and diabetes. Most people who have type 2 diabetes are overweight. Metabolic syndrome. Metabolic syndrome is the name for a group of risk factors that raises your risk of heart disease and type 2 diabetes. Metabolic syndrome also raises your risk of other health problems, such as stroke. Lack of physical activity. Lack of physical activity can worsen other risk factors for heart disease, such as unhealthy blood cholesterol levels, high blood pressure, diabetes, and overweight or obesity. Unhealthy diet. An unhealthy diet can raise your risk of heart disease. Foods that are high in saturated and trans fats, cholesterol, sodium (salt), and sugar can worsen other heart disease risk factors. Stress. Stress and anxiety can trigger your arteries to tighten. This can raise your blood pressure and your risk of having a heart attack. Stress also may indirectly raise your risk of heart disease if it makes you more likely to smoke or overeat foods high in fat and sugar. Risk Factors You Can't Control Age. As you get older, your risk of heart disease and heart attack rises. In men, the risk of heart disease increases after age 45. In women, the risk increases after age 55. In people who have diabetes, the risk of heart disease increases after age 40. Gender. Before age 55, women seem to have a lower risk of heart disease than men. After age 55, however, the risk of heart disease increases similarly in both women and men. Family history of early heart disease. Your risk increases if your father or a brother was diagnosed with heart disease before 55 years of age, or if your mother or a sister was diagnosed with heart disease before 65 years of age. Preeclampsia (pre-e-KLAMP-se-ah). This condition can develop during pregnancy. The two main signs of preeclampsia are a rise in blood pressure and excess protein in the urine. Preeclampsia is linked to an increased lifetime risk of CHD, heart attack, heart failure, and high blood pressure.
What are the symptoms of Diabetic Heart Disease ?
Some people who have diabetic heart disease (DHD) may have no signs or symptoms of heart disease. This is called silent heart disease. Diabetes-related nerve damage that blunts heart pain may explain why symptoms aren't noticed. Thus, people who have diabetes should have regular medical checkups. Tests may reveal a problem before they're aware of it. Early treatment can reduce or delay related problems. Some people who have DHD will have some or all of the typical symptoms of heart disease. Be aware of the symptoms described below and seek medical care if you have them. If you think you're having a heart attack, call 911 right away for emergency care. Treatment for a heart attack works best when it's given right after symptoms occur. Coronary Heart Disease A common symptom of coronary heart disease (CHD) is angina. Angina is chest pain or discomfort that occurs if your heart muscle doesn't get enough oxygen-rich blood. Angina may feel like pressure or squeezing in your chest. You also may feel it in your shoulders, arms, neck, jaw, or back. Angina pain may even feel like indigestion. The pain tends to get worse with activity and go away with rest. Emotional stress also can trigger the pain. See your doctor if you think you have angina. He or she may recommend tests to check your coronary arteries and to see whether you have CHD risk factors. Other CHD signs and symptoms include nausea (feeling sick to your stomach), fatigue (tiredness), shortness of breath, sweating, light-headedness, and weakness. Some people don't realize they have CHD until they have a heart attack. A heart attack occurs if a blood clot forms in a coronary artery and blocks blood flow to part of the heart muscle. The most common heart attack symptom is chest pain or discomfort. Most heart attacks involve discomfort in the center or left side of the chest that often lasts for more than a few minutes or goes away and comes back. The discomfort can feel like uncomfortable pressure, squeezing, fullness, or pain. The feeling can be mild or severe. Heart attack pain sometimes feels like indigestion or heartburn. Shortness of breath may occur with or before chest discomfort. Heart attacks also can cause upper body discomfort in one or both arms, the back, neck, jaw, or upper part of the stomach. Other heart attack symptoms include nausea, vomiting, light-headedness or sudden dizziness, breaking out in a cold sweat, sleep problems, fatigue, and lack of energy. Some heart attack symptoms are similar to angina symptoms. Angina pain usually lasts for only a few minutes and goes away with rest. Chest pain or discomfort that doesn't go away or changes from its usual pattern (for example, occurs more often or while you're resting) can be a sign of a heart attack. If you don't know whether your chest pain is angina or a heart attack, call 911 right away for emergency care. Not everyone who has a heart attack has typical symptoms. If you've already had a heart attack, your symptoms may not be the same for another one. Also, diabetes-related nerve damage can interfere with pain signals in the body. As a result, some people who have diabetes may have heart attacks without symptoms. Heart Failure The most common symptoms of heart failure are shortness of breath or trouble breathing, fatigue, and swelling in the ankles, feet, legs, abdomen, and veins in your neck. As the heart weakens, heart failure symptoms worsen. People who have heart failure can live longer and more active lives if the condition is diagnosed early and they follow their treatment plans. If you have any form of DHD, talk with your doctor about your risk of heart failure. Diabetic Cardiomyopathy Diabetic cardiomyopathy may not cause symptoms in its early stages. Later, you may have weakness, shortness of breath, a severe cough, fatigue, and swelling of the legs and feet.
How to diagnose Diabetic Heart Disease ?
Your doctor will diagnose diabetic heart disease (DHD) based on your signs and symptoms, medical and family histories, a physical exam, and the results from tests and procedures. Doctors and researchers are still trying to find out whether routine testing for DHD will benefit people who have diabetes but no heart disease symptoms. Initial Tests No single test can diagnose DHD, which may involve coronary heart disease (CHD), heart failure, and/or diabetic cardiomyopathy. Initially, your doctor may recommend one or more of the following tests. Blood Pressure Measurement To measure your blood pressure, your doctor or nurse will use some type of a gauge, a stethoscope (or electronic sensor), and a blood pressure cuff. Most often, you'll sit or lie down with the cuff around your arm as your doctor or nurse checks your blood pressure. If he or she doesn't tell you what your blood pressure numbers are, you should ask. Blood Tests Blood tests check the levels of certain fats, cholesterol, sugar, and proteins in your blood. Abnormal levels of these substances may show that you're at risk for DHD. A blood test also can check the level of a hormone called BNP (brain natriuretic peptide) in your blood. The heart makes BNP, and the level of BNP rises during heart failure. Chest X Ray A chest x ray takes pictures of the organs and structures inside your chest, such as your heart, lungs, and blood vessels. A chest x ray can reveal signs of heart failure. EKG (Electrocardiogram) An EKG is a simple, painless test that detects and records your heart's electrical activity. The test shows how fast your heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through your heart. An EKG can show signs of heart damage due to CHD and signs of a previous or current heart attack. Stress Test Some heart problems are easier to diagnose when your heart is working hard and beating fast. Stress testing gives your doctor information about how your heart works during physical stress. During a stress test, you exercise (walk or run on a treadmill or pedal a bicycle) to make your heart work hard and beat fast. Tests are done on your heart while you exercise. If you cant exercise, you may be given medicine to raise your heart rate. Urinalysis For this test, you'll give a sample of urine for analysis. The sample is checked for abnormal levels of protein or blood cells. In people who have diabetes, protein in the urine is a risk factor for DHD. Other Tests and Procedures Your doctor may refer you to a cardiologist if your initial test results suggest that you have a form of DHD. A cardiologist is a doctor who specializes in diagnosing and treating heart diseases and conditions. The cardiologist may recommend other tests or procedures to get more detailed information about the nature and extent of your DHD. For more information about other tests and procedures, go to the diagnosis sections of the Health Topics Coronary Heart Disease, Heart Failure, and Cardiomyopathy articles.
What are the treatments for Diabetic Heart Disease ?
Diabetic heart disease (DHD) is treated with lifestyle changes, medicines, and medical procedures. The goals of treating DHD include: Controlling diabetes and any other heart disease risk factors you have, such as unhealthy blood cholesterol levels and high blood pressure Reducing or relieving heart disease symptoms, such as angina (chest pain or discomfort) Preventing or delaying heart disease complications, such as a heart attack Repairing heart and coronary artery damage Following the treatment plan your doctor recommends is very important. Compared with people who don't have diabetes, people who have the disease are at higher risk for heart disease, have additional causes of heart disease, may develop heart disease at a younger age, and may have more severe heart disease. Taking action to manage multiple risk factors helps improve your outlook. The good news is that many lifestyle changes help control multiple risk factors. Lifestyle Changes Following a healthy lifestyle is an important part of treating diabetes and DHD. Some people who have diabetes can manage their blood pressure and blood cholesterol levels with lifestyle changes alone. Following a Healthy Diet A healthy diet includes a variety of vegetables and fruits. It also includes whole grains, fat-free or low-fat dairy products, and protein foods, such as lean meats, poultry without skin, seafood, processed soy products, nuts, seeds, beans, and peas. A healthy diet is low in sodium (salt), added sugars, solid fats, and refined grains. Solid fats are saturated fat and trans fatty acids. Refined grains come from processing whole grains, which results in a loss of nutrients (such as dietary fiber). For more information about following a healthy diet, go to the National Heart, Lung, and Blood Institutes (NHLBIs) Your Guide to Lowering Your Blood Pressure With DASH and the U.S. Department of Agricultures ChooseMyPlate.gov Web site. Both resources provide general information about healthy eating. Maintaining a Healthy Weight Controlling your weight helps you control heart disease risk factors. If youre overweight or obese, work with your doctor to create a reasonable weight-loss plan. For more information about losing weight or maintaining your weight, go to the Health Topics Overweight and Obesity article. Being Physically Active Regular physical activity can lower many heart disease risk factors, and it helps control your blood sugar level. Physical activity also can improve how insulin works. (Insulin is a hormone that helps turn glucose into energy.) Generally, adults should do at least 150 minutes (2hours and 30 minutes) of moderate-intensity physical activity each week. You dont have to do the activity all at once. You can break it up into shorter periods of at least 10 minutes each. Talk with your doctor about what types and amounts and physical activity are safe for you. People who have diabetes must be careful to watch their blood sugar levels and avoid injury to their feet during physical activity. For more information about physical activity, go to the U.S. Department of Health and Human Services' "2008 Physical Activity Guidelines for Americans," the Health Topics Physical Activity and Your Heart article, and the NHLBI's "Your Guide to Physical Activity and Your Heart." Quitting Smoking Smoking can damage your blood vessels and raise your risk of heart disease. Talk with your doctor about programs and products that can help you quit smoking. Also, try to avoid secondhand smoke. If you have trouble quitting smoking on your own, consider joining a support group. Many hospitals, workplaces, and community groups offer classes to help people quit smoking. For more information about how to quit smoking, go to the Health Topics Smoking and Your Heart article and the NHLBI's "Your Guide to a Healthy Heart." Managing Stress Research shows that strong emotions, such as anger, can trigger a heart attack. Learning how to managestress, relax, and cope with problems can improve your emotional and physical health. Medicines Medicines are an important part of treatment for people who have diabetes and for people who have DHD. Medicines can help control blood sugar levels, lower blood pressure, reduce the risk of blood clots, improve blood cholesterol levels, reduce the heart's workload, and treat angina symptoms. Your doctor will prescribe medicines based on your specific needs. Medical Procedures If you have DHD, your doctor may recommend a medical procedure. The type of procedure will depend on the type of heart disease you have. For example, both percutaneous coronary intervention (PCI),also known as coronaryangioplasty, and coronary artery bypass grafting (CABG) are used to treat coronary heart disease (CHD). Both of these procedures improve blood flow to your heart. PCI also can relieve chest pain. CABG can relieve chest pain and may help prevent a heart attack. If you have heart damage and severe heart failure symptoms, your doctor may recommend a cardiac resynchronization therapy (CRT) device or an implantable cardioverter defibrillator (ICD). A CRT device is a type of pacemaker. A pacemaker is a small device that helps control abnormal heart rhythms. Its placed under the skin of the chest or abdomen. A CRT device helps the heart's lower chambers contract at the same time, which may decrease heart failure symptoms. An ICD is similar to a pacemaker. An ICD is a small device thats placed under the skin of the chest or abdomen. The device uses electrical pulses or shocks to help control dangerous heart rhythms. Your doctor also may recommend a pacemaker or ICD to treat diabetic cardiomyopathy. Other types of surgery also are used to treat this type of heart disease. For more information about medical procedures used to treat diabetes-related heart diseases, go to the treatment sections of the Health Topics Coronary Heart Disease, Heart Failure, and Cardiomyopathy articles. Diabetes-Specific Treatment Issues The treatments described above are used for people who have DHD and for people who have heart disease without diabetes. However, some aspects of heart disease treatment differ for people who have diabetes. Treatment for High Blood Pressure and High Blood Cholesterol Treatment for high blood pressure and high blood cholesterol often begins earlier in people who have diabetes than in those who don't. People who have diabetes also may have more aggressive treatment goals. For example, your doctor may prescribe medicines called statins even if your blood cholesterol levels are in the normal range. Your doctor also may prescribe statins if you're older than 40 and have other heart disease risk factors. Target goals for LDL cholesterol (sometimes called "bad" cholesterol) and high blood pressure also are lower for people who have diabetes than for those who don't. Studies suggest that most people who have diabetes will need more than one blood pressure medicine to reach their goals. Research also has shown that some people who have diabetes may benefit more from certain blood pressure and cholesterol medicines than from others. One example is a group of cholesterol medicines called bile acid sequestrants (such as cholestyramine). This type of medicine may offer advantages for people who have type 2 diabetes. It appears to improve blood sugar control and lower LDL cholesterol. Treatment for Heart Failure Some studies suggest that certain medicines may have advantages for treating heart failure in people who have diabetes. These medicines include ACE inhibitors, angiotensin receptor blockers, aldosterone antagonists, and beta blockers. Research shows that two blood sugar medicines (insulin and sulfanylureas) don't seem to reduce the risk of heart failure in people who have type 2 diabetes. A third medicine (metformin) shows promise, but research is still ongoing. Heart Attack Prevention Doctors may recommend aspirin for people with diabetes who are at increased risk for heart disease and heart attack. Taken each day, low-dose aspirin may prevent blood clots that can lead to a heart attack. People with diabetes who are at increased risk include most men older than 50 and most women older than 60 who have one or more of the following risk factors: Smoking High blood pressure High blood cholesterol A family history of early heart disease A higher than normal level of protein in their urine Blood Sugar Control Controlling blood sugar levels is good for heart health. For example, controlling blood sugar improves everyday heart function for people who have diabetes and heart failure.
How to prevent Diabetic Heart Disease ?
Taking action to control risk factors can help prevent or delay heart disease in people who have diabetes and in those who don't. Your risk of heart disease increases with the number of risk factors you have. One step you can take is to adopt a healthy lifestyle. A healthy lifestyle should be part of a lifelong approach to healthy living. A healthy lifestyle includes: Following a healthy diet Maintaining a healthy weight Being physically active Quitting smoking Managing stress You also should know your family history of diabetes and heart disease. If you or someone in your family has diabetes, heart disease, or both, let your doctor know. Your doctor may prescribe medicines to control certain risk factors, such as high blood pressure and high blood cholesterol. Take all of your medicines exactly as your doctor advises. People who have diabetes also need good blood sugar control. Controlling your blood sugar level is good for heart health. Ask your doctor about the best ways to control your blood sugar level. For more information about lifestyle changes and medicines, go to "How Is Diabetic Heart Disease Treated?"
What is (are) Sleep Deprivation and Deficiency ?
Sleep deprivation (DEP-rih-VA-shun) is a condition that occurs if you don't get enough sleep. Sleep deficiency is a broader concept. It occurs if you have one or more of the following: You don't get enough sleep (sleep deprivation) You sleep at the wrong time of day (that is, you're out of sync with your body's natural clock) You don't sleep well or get all of the different types of sleep that your body needs You have a sleep disorder that prevents you from getting enough sleep or causes poor quality sleep This article focuses on sleep deficiency, unless otherwise noted. Sleeping is a basic human need, like eating, drinking, and breathing. Like these other needs, sleeping is a vital part of the foundation for good health and well-being throughout your lifetime. Sleep deficiency can lead to physical and mental health problems, injuries, loss of productivity, and even a greater risk of death. Overview To understand sleep deficiency, it helps to understand how sleep works and why it's important. The two basic types of sleep are rapid eye movement (REM) and non-REM. Non-REM sleep includes what is commonly known as deep sleep or slow wave sleep. Dreaming typically occurs during REM sleep. Generally, non-REM and REM sleep occur in a regular pattern of 35 cycles each night. Your ability to function and feel well while you're awake depends on whether you're getting enough total sleep and enough of each type of sleep. It also depends on whether you're sleeping at a time when your body is prepared and ready to sleep. You have an internal "body clock" that controls when you're awake and when your body is ready for sleep. This clock typically follows a 24-hour repeating rhythm (called the circadian rhythm). The rhythm affects every cell, tissue, and organ in your body and how they work. (For more information, go to "What Makes You Sleep?") If you aren't getting enough sleep, are sleeping at the wrong times, or have poor quality sleep, you'll likely feel very tired during the day. You may not feel refreshed and alert when you wake up. Sleep deficiency can interfere with work, school, driving, and social functioning. You might have trouble learning, focusing, and reacting. Also, you might find it hard to judge other people's emotions and reactions. Sleep deficiency also can make you feel frustrated, cranky, or worried in social situations. The signs and symptoms of sleep deficiency may differ between children and adults. Children who are sleep deficient might be overly active and have problems paying attention. They also might misbehave, and their school performance can suffer. Outlook Sleep deficiency is a common public health problem in the United States. People in all age groups report not getting enough sleep. As part of a health survey for the Centers for Disease Control and Prevention, about 719 percent of adults in the United States reported not getting enough rest or sleep every day. Nearly 40 percent of adults report falling asleep during the day without meaning to at least once a month. Also, an estimated 50 to 70 million Americans have chronic (ongoing) sleep disorders. Sleep deficiency is linked to many chronic health problems, including heart disease, kidney disease, high blood pressure, diabetes, stroke, obesity, and depression. Sleep deficiency also is associated with an increased risk of injury in adults, teens, and children. For example, driver sleepiness (not related to alcohol) is responsible for serious car crash injuries and death. In the elderly, sleep deficiency might be linked to an increased risk of falls and broken bones. In addition, sleep deficiency has played a role in human errors linked to tragic accidents, such as nuclear reactor meltdowns, grounding of large ships, and aviation accidents. A common myth is that people can learn to get by on little sleep with no negative effects. However, research shows that getting enough quality sleep at the right times is vital for mental health, physical health, quality of life, and safety.
Who is at risk for Sleep Deprivation and Deficiency? ?
Sleep deficiency, which includes sleep deprivation, affects people of all ages, races, and ethnicities. Certain groups of people may be more likely to be sleep deficient. Examples include people who: Have limited time available for sleep, such as caregivers or people working long hours or more than one job Have schedules that conflict with their internal body clocks, such as shift workers, first responders, teens who have early school schedules, or people who must travel for work Make lifestyle choices that prevent them from getting enough sleep, such as taking medicine to stay awake, abusing alcohol or drugs, or not leaving enough time for sleep Have undiagnosed or untreated medical problems, such as stress, anxiety, or sleep disorders Have medical conditions or take medicines that interfere with sleep Certain medical conditions have been linked to sleep disorders. These conditions include heart failure, heart disease, obesity, diabetes, high blood pressure, stroke or transient ischemic attack (mini-stroke), depression, and attention-deficit hyperactivity disorder (ADHD). If you have or have had one of these conditions, ask your doctor whether you might benefit from a sleep study. A sleep study allows your doctor to measure how much and how well you sleep. It also helps show whether you have sleep problems and how severe they are. For more information, go to the Health Topics Sleep Studies article. If you have a child who is overweight, talk with the doctor about your child's sleep habits.
What are the symptoms of Sleep Deprivation and Deficiency ?
Sleep deficiency can cause you to feel very tired during the day. You may not feel refreshed and alert when you wake up. Sleep deficiency also can interfere with work, school, driving, and social functioning. How sleepy you feel during the day can help you figure out whether you're having symptoms of problem sleepiness. You might be sleep deficient if you often feel like you could doze off while: Sitting and reading or watching TV Sitting still in a public place, such as a movie theater, meeting, or classroom Riding in a car for an hour without stopping Sitting and talking to someone Sitting quietly after lunch Sitting in traffic for a few minutes Sleep deficiency can cause problems with learning, focusing, and reacting. You may have trouble making decisions, solving problems, remembering things, controlling your emotions and behavior, and coping with change. You may take longer to finish tasks, have a slower reaction time, and make more mistakes. The signs and symptoms of sleep deficiency may differ between children and adults. Children who are sleep deficient might be overly active and have problems paying attention. They also might misbehave, and their school performance can suffer. Sleep-deficient children may feel angry and impulsive, have mood swings, feel sad or depressed, or lack motivation. You may not notice how sleep deficiency affects your daily routine. A common myth is that people can learn to get by on little sleep with no negative effects. However, research shows that getting enough quality sleep at the right times is vital for mental health, physical health, quality of life, and safety. To find out whether you're sleep deficient, try keeping a sleep diary for a couple of weeks. Write down how much you sleep each night, how alert and rested you feel in the morning, and how sleepy you feel during the day. Compare the amount of time you sleep each day with the average amount of sleep recommended for your age group, as shown in the chart in "How Much Sleep Is Enough?" If you often feel very sleepy, and efforts to increase your sleep don't help, talk with your doctor. You can find a sample sleep diary in the National Heart, Lung, and Blood Institute's "Your Guide to Healthy Sleep."
What is (are) Arrhythmia ?
Espaol An arrhythmia (ah-RITH-me-ah) is a problem with the rate or rhythm of the heartbeat. During an arrhythmia, the heart can beat too fast, too slow, or with an irregular rhythm. A heartbeat that is too fast is called tachycardia (TAK-ih-KAR-de-ah). A heartbeat that is too slow is called bradycardia (bray-de-KAR-de-ah). Most arrhythmias are harmless, but some can be serious or even life threatening. During an arrhythmia, the heart may not be able to pump enough blood to the body. Lack of blood flow can damage the brain, heart, and other organs. Understanding the Heart's Electrical System To understand arrhythmias, it helps to understand the heart's internal electrical system. The heart's electrical system controls the rate and rhythm of the heartbeat. With each heartbeat, an electrical signal spreads from the top of the heart to the bottom. As the signal travels, it causes the heart to contract and pump blood. Each electrical signal begins in a group of cells called the sinus node or sinoatrial (SA) node. The SA node is located in the heart's upper right chamber, the right atrium (AY-tree-um). In a healthy adult heart at rest, the SA node fires off an electrical signal to begin a new heartbeat 60 to 100 times a minute. From the SA node, the electrical signal travels through special pathways in the right and left atria. This causes the atria to contract and pump blood into the heart's two lower chambers, the ventricles (VEN-trih-kuls). The electrical signal then moves down to a group of cells called the atrioventricular (AV) node, located between the atria and the ventricles. Here, the signal slows down just a little, allowing the ventricles time to finish filling with blood. The electrical signal then leaves the AV node and travels along a pathway called the bundle of His. This pathway divides into a right bundle branch and a left bundle branch. The signal goes down these branches to the ventricles, causing them to contract and pump blood to the lungs and the rest of the body. The ventricles then relax, and the heartbeat process starts all over again in the SA node. (For more information about the heart's electrical system, including detailed animations, go to the Health Topics How the Heart Works article.) A problem with any part of this process can cause an arrhythmia. For example, in atrial fibrillation (A-tre-al fi-bri-LA-shun), a common type of arrhythmia, electrical signals travel through the atria in a fast and disorganized way. This causes the atria to quiver instead of contract. Outlook There are many types of arrhythmia. Most arrhythmias are harmless, but some are not. The outlook for a person who has an arrhythmia depends on the type and severity of the arrhythmia. Even serious arrhythmias often can be successfully treated. Most people who have arrhythmias are able to live normal, healthy lives.
What causes Arrhythmia ?
An arrhythmia can occur if the electrical signals that control the heartbeat are delayed or blocked. This can happen if the special nerve cells that produce electrical signals don't work properly. It also can happen if the electrical signals don't travel normally through the heart. An arrhythmia also can occur if another part of the heart starts to produce electrical signals. This adds to the signals from the special nerve cells and disrupts the normal heartbeat. Smoking, heavy alcohol use, use of some drugs (such as cocaine or amphetamines), use of some prescription or over-the-counter medicines, or too much caffeine or nicotine can lead to arrhythmias in some people. Strong emotional stress or anger can make the heart work harder, raise blood pressure, and release stress hormones. Sometimes these reactions can lead to arrhythmias. A heart attack or other condition that damages the heart's electrical system also can cause arrhythmias. Examples of such conditions include high blood pressure, coronary heart disease, heart failure, an overactive or underactive thyroid gland (too much or too little thyroid hormone produced), and rheumatic heart disease. Congenital (kon-JEN-ih-tal) heart defects can cause some arrhythmias, such as Wolff-Parkinson-White syndrome. The term "congenital means the defect is present at birth. Sometimes the cause of arrhythmias is unknown.
Who is at risk for Arrhythmia? ?
Arrhythmias are very common in older adults. Atrial fibrillation (a common type of arrhythmia that can cause problems) affects millions of people, and the number is rising. Most serious arrhythmias affect people older than 60. This is because older adults are more likely to have heart disease and other health problems that can lead to arrhythmias. Older adults also tend to be more sensitive to the side effects of medicines, some of which can cause arrhythmias. Some medicines used to treat arrhythmias can even cause arrhythmias as a side effect. Some types of arrhythmia happen more often in children and young adults. Paroxysmal supraventricular tachycardia (PSVT), including Wolff-Parkinson-White syndrome, is more common in young people. PSVT is a fast heart rate that begins and ends suddenly. Major Risk Factors Arrhythmias are more common in people who have diseases or conditions that weaken the heart, such as: Heart attack Heart failure or cardiomyopathy, which weakens the heart and changes the way electrical signals move through the heart Heart tissue that's too thick or stiff or that hasn't formed normally Leaking or narrowed heart valves, which make the heart work too hard and can lead to heart failure Congenital heart defects (defects present at birth) that affect the heart's structure or function Other conditions also can raise the risk for arrhythmias, such as: High blood pressure Infections that damage the heart muscle or the sac around the heart Diabetes, which increases the risk of high blood pressure and coronary heart disease Sleep apnea, which can stress the heart because the heart doesn't get enough oxygen An overactive or underactive thyroid gland (too much or too little thyroid hormone in the body) Several other risk factors also can raise your risk for arrhythmias. Examples include heart surgery, certain drugs (such as cocaine or amphetamines), or an imbalance of chemicals or other substances (such as potassium) in the bloodstream.
What are the symptoms of Arrhythmia ?
Many arrhythmias cause no signs or symptoms. When signs or symptoms are present, the most common ones are: Palpitations (feelings that your heart is skipping a beat, fluttering, or beating too hard or fast) A slow heartbeat An irregular heartbeat Feeling pauses between heartbeats More serious signs and symptoms include: Anxiety Weakness, dizziness, and light-headedness Fainting or nearly fainting Sweating Shortness of breath Chest pain
How to diagnose Arrhythmia ?
Arrhythmias can be hard to diagnose, especially the types that only cause symptoms every once in a while. Doctors diagnose arrhythmias based on medical and family histories, a physical exam, and the results from tests and procedures. Specialists Involved Doctors who specialize in the diagnosis and treatment of heart diseases include: Cardiologists. These doctors diagnose and treat adults who have heart problems. Pediatric cardiologists. These doctors diagnose and treat babies, children, and youth who have heart problems. Electrophysiologists. These doctors are cardiologists or pediatric cardiologists who specialize in arrhythmias. Medical and Family Histories To diagnose an arrhythmia, your doctor may ask you to describe your symptoms. He or she may ask whether you feel fluttering in your chest and whether you feel dizzy or light-headed. Your doctor also may ask whether you have other health problems, such as a history of heart disease, high blood pressure, diabetes, or thyroid problems. He or she may ask about your family's medical history, including whether anyone in your family: Has a history of arrhythmias Has ever had heart disease or high blood pressure Has died suddenly Has other illnesses or health problems Your doctor will likely want to know what medicines you're taking, including over-the-counter medicines and supplements. Your doctor may ask about your health habits, such as physical activity, smoking, or using alcohol or drugs (for example, cocaine). He or she also may want to know whether you've had emotional stress or anger. Physical Exam During a physical exam, your doctor may: Listen to the rate and rhythm of your heartbeat Listen to your heart for a heart murmur (an extra or unusual sound heard during your heartbeat) Check your pulse to find out how fast your heart is beating Check for swelling in your legs or feet, which could be a sign of an enlarged heart or heart failure Look for signs of other diseases, such as thyroid disease, that could be causing the problem Diagnostic Tests and Procedures EKG (Electrocardiogram) An EKG is a simple, painless test that detects and records the heart's electrical activity. It's the most common test used to diagnose arrhythmias. An EKG shows how fast the heart is beating and its rhythm (steady or irregular). It also records the strength and timing of electrical signals as they pass through the heart. A standard EKG only records the heartbeat for a few seconds. It won't detect arrhythmias that don't happen during the test. To diagnose arrhythmias that come and go, your doctor may have you wear a portable EKG monitor. The two most common types of portable EKGs are Holter and event monitors. Holter and Event Monitors A Holter monitor records the heart's electrical signals for a full 24- or 48-hour period. You wear one while you do your normal daily activities. This allows the monitor to record your heart for a longer time than a standard EKG. An event monitor is similar to a Holter monitor. You wear an event monitor while doing your normal activities. However, an event monitor only records your heart's electrical activity at certain times while you're wearing it. For many event monitors, you push a button to start the monitor when you feel symptoms. Other event monitors start automatically when they sense abnormal heart rhythms. Some event monitors are able to send data about your heart's electrical activity to a central monitoring station. Technicians at the station review the information and send it to your doctor. You also can use the device to report any symptoms you're having. You can wear an event monitor for weeks or until symptoms occur. Other Tests Other tests also are used to help diagnose arrhythmias. Blood tests. Blood tests check the level of substances in the blood, such as potassium and thyroid hormone. Abnormal levels of these substances can increase your chances of having an arrhythmia. Chest x ray. A chest x ray is a painless test that creates pictures of the structures in your chest, such as your heart and lungs. This test can show whether your heart is enlarged. Echocardiography. This test uses sound waves to create a moving picture of your heart. Echocardiography (echo) provides information about the size and shape of your heart and how well your heart chambers and valves are working. The test also can identify areas of poor blood flow to the heart, areas of heart muscle that aren't contracting normally, and previous injury to the heart muscle caused by poor blood flow. There are several types of echo, including stress echo. This test is done both before and after a stress test (see below). A stress echo usually is done to find out whether you have decreased blood flow to your heart, a sign of coronary heart disease (CHD). A transesophageal (tranz-ih-sof-uh-JEE-ul) echo, or TEE, is a special type of echo that takes pictures of the heart through the esophagus. The esophagus is the passage leading from your mouth to your stomach. Stress test. Some heart problems are easier to diagnose when your heart is working hard and beating fast. During stress testing, you exercise to make your heart work hard and beat fast while heart tests are done. If you can't exercise, you may be given medicine to make your heart work hard and beat fast. The heart tests done during stress testing may include nuclear heart scanning, echo, and positron emission tomography (PET) scanning of the heart. Electrophysiology study (EPS). This test is used to assess serious arrhythmias. During an EPS, a thin, flexible wire is passed through a vein in your groin (upper thigh) or arm to your heart. The wire records your heart's electrical signals. Your doctor can use the wire to electrically stimulate your heart and trigger an arrhythmia. This allows your doctor to see whether an antiarrhythmia medicine can stop the problem. Catheter ablation, a procedure used to treat some arrhythmias, may be done during an EPS. Tilt table testing. This test sometimes is used to help find the cause of fainting spells. You lie on a table that moves from a lying down to an upright position. The change in position may cause you to faint. Your doctor watches your symptoms, heart rate, EKG reading, and blood pressure throughout the test. He or she may give you medicine and then check your response to the medicine. Coronary angiography. Coronary angiography uses dye and special x rays to show the inside of your coronary arteries. To get the dye into your coronary arteries, your doctor will use a procedure called cardiac catheterization (KATH-e-ter-ih-ZA-shun). A thin, flexible tube called a catheter is put into a blood vessel in your arm, groin (upper thigh), or neck. The tube is threaded into your coronary arteries, and the dye is released into your bloodstream. Special x rays are taken while the dye is flowing through your coronary arteries. The dye lets your doctor study the flow of blood through your heart and blood vessels. This helps your doctor find blockages that can cause a heart attack. Implantable loop recorder. This device detects abnormal heart rhythms. Minor surgery is used to place this device under the skin in the chest area. An implantable loop recorder helps doctors figure out why a person may be having palpitations or fainting spells, especially if these symptoms don't happen very often. The device can be used for as long as 12 to 24 months.
What are the treatments for Arrhythmia ?
Common arrhythmia treatments include medicines, medical procedures, and surgery. Your doctor may recommend treatment if your arrhythmia causes serious symptoms, such as dizziness, chest pain, or fainting. Your doctor also may recommend treatment if the arrhythmia increases your risk for problems such as heart failure, stroke, or sudden cardiac arrest. Medicines Medicines can slow down a heart that's beating too fast. They also can change an abnormal heart rhythm to a normal, steady rhythm. Medicines that do this are called antiarrhythmics. Some of the medicines used to slow a fast heart rate are beta blockers (such as metoprolol and atenolol), calcium channel blockers (such as diltiazem and verapamil), and digoxin (digitalis). These medicines often are used to treat atrial fibrillation (AF). Some of the medicines used to restore a normal heart rhythm are amiodarone, sotalol, flecainide, propafenone, dofetilide, ibutilide, quinidine, procainamide, and disopyramide. These medicines often have side effects. Some side effects can make an arrhythmia worse or even cause a different kind of arrhythmia. Currently, no medicine can reliably speed up a slow heart rate. Abnormally slow heart rates are treated with pacemakers. People who have AF and some other arrhythmias may be treated with blood-thinning medicines. These medicines reduce the risk of blood clots forming. Warfarin (Coumadin), dabigatran, heparin, and aspirin are examples of blood-thinning medicines. Medicines also can control an underlying medical condition that might be causing an arrhythmia, such as heart disease or a thyroid condition. Medical Procedures Some arrhythmias are treated with pacemakers. A pacemaker is a small device that's placed under the skin of your chest or abdomen to help control abnormal heart rhythms. Pacemakers have sensors that detect the heart's electrical activity. When the device senses an abnormal heart rhythm, it sends electrical pulses to prompt the heart to beat at a normal rate. Some arrhythmias are treated with a jolt of electricity to the heart. This type of treatment is called cardioversion or defibrillation, depending on which type of arrhythmia is being treated. Some people who are at risk for ventricular fibrillation are treated with a device called an implantable cardioverter defibrillator (ICD). Like a pacemaker, an ICD is a small device that's placed under the skin in the chest. This device uses electrical pulses or shocks to help control life-threatening arrhythmias. An ICD continuously monitors the heartbeat. If it senses a dangerous ventricular arrhythmia, it sends an electric shock to the heart to restore a normal heartbeat. A procedure called catheter ablation is used to treat some arrhythmias if medicines don't work. During this procedure, a thin, flexible tube is put into a blood vessel in your arm, groin (upper thigh), or neck. Then, the tube is guided to your heart. A special machine sends energy through the tube to your heart. The energy finds and destroys small areas of heart tissue where abnormal heart rhythms may start. Catheter ablation usually is done in a hospital as part of an electrophysiology study. Your doctor may recommend transesophageal echocardiography before catheter ablation to make sure no blood clots are present in the atria (the heart's upper chambers). Surgery Doctors treat some arrhythmias with surgery. This may occur if surgery is already being done for another reason, such as repair of a heart valve. One type of surgery for AF is called maze surgery. During this surgery, a surgeon makes small cuts or burns in the atria. These cuts or burns prevent the spread of disorganized electrical signals. If coronary heart disease is the cause of your arrhythmia, your doctor may recommend coronary artery bypass grafting. This surgery improves blood flow to the heart muscle. Other Treatments Vagal maneuvers are another type of treatment for arrhythmia. These simple exercises sometimes can stop or slow down certain types of supraventricular arrhythmias. They do this by affecting the vagus nerve, which helps control the heart rate. Some vagal maneuvers include: Gagging Holding your breath and bearing down (Valsalva maneuver) Immersing your face in ice-cold water Coughing Putting your fingers on your eyelids and pressing down gently Vagal maneuvers aren't an appropriate treatment for everyone. Discuss with your doctor whether vagal maneuvers are an option for you.
What is (are) Coronary Microvascular Disease ?
Coronary microvascular disease (MVD) is heart disease that affects the tiny coronary (heart) arteries. In coronary MVD, the walls of the heart's tiny arteries are damaged or diseased. Coronary MVD is different from traditional coronary heart disease (CHD), also called coronary artery disease. In CHD, a waxy substance called plaque (plak) builds up in the large coronary arteries. Plaque narrows the heart's large arteries and reduces the flow of oxygen-rich blood to your heart muscle. The buildup of plaque also makes it more likely that blood clots will form in your arteries. Blood clots can mostly or completely block blood flow through a coronary artery. In coronary MVD, however, the heart's tiny arteries are affected. Plaque doesn't create blockages in these vessels as it does in the heart's large arteries. Coronary Microvascular Disease Overview Both men and women who have coronary microvascular disease often have diabetes or high blood pressure. Some people who have coronary microvascular disease may have inherited heart muscle diseases. Diagnosing coronary microvascular disease has been a challenge for doctors. Standard tests used to diagnose coronary heart disease arent designed to detect coronary microvascular disease. More research is needed to find the best diagnostic tests and treatments for thedisease. Outlook Most of what is known about coronary MVD comes from the National Heart, Lung, and Blood Institute's Wise study (Women's Ischemia Syndrome Evaluation). The WISE study started in 1996. The goal of the study was to learn more about how heart disease develops in women. Currently, research is ongoing to learn more about the role of hormones in heart disease and to find better ways to diagnose coronary MVD. Studies also are under way to learn more about the causes of coronary MVD, how to treat the disease, and the expected health outcomes for people with coronary MVD.