|
import datasets |
|
import json |
|
import os |
|
import pandas as pd |
|
|
|
_DESCRIPTION = "Permutation composition datasets with dynamic filtering by group degree, order, and sequence length." |
|
_HOMEPAGE = "https://huggingface.co/datasets/BeeGass/permutation-groups" |
|
_LICENSE = "MIT" |
|
|
|
class PermutationGroupsConfig(datasets.BuilderConfig): |
|
def __init__( |
|
self, |
|
group_type=None, |
|
min_degree=None, |
|
max_degree=None, |
|
min_order=None, |
|
max_order=None, |
|
min_len=3, |
|
max_len=1024, |
|
**kwargs |
|
): |
|
""" |
|
Configuration for loading permutation groups. |
|
|
|
Args: |
|
group_type: Type of group (symmetric, alternating, cyclic, dihedral, klein, |
|
quaternion, elementary_abelian, psl, frobenius, mathieu) |
|
min_degree: Minimum group degree to include |
|
max_degree: Maximum group degree to include |
|
min_order: Minimum group order to include |
|
max_order: Maximum group order to include |
|
min_len: Minimum sequence length |
|
max_len: Maximum sequence length |
|
""" |
|
|
|
if "name" not in kwargs: |
|
if group_type: |
|
kwargs["name"] = group_type |
|
else: |
|
kwargs["name"] = "all" |
|
|
|
super().__init__(**kwargs) |
|
self.group_type = group_type |
|
self.min_degree = min_degree |
|
self.max_degree = max_degree |
|
self.min_order = min_order |
|
self.max_order = max_order |
|
self.min_len = min_len |
|
self.max_len = max_len |
|
|
|
class PermutationGroups(datasets.GeneratorBasedBuilder): |
|
"""Permutation groups dataset with dynamic filtering.""" |
|
|
|
VERSION = datasets.Version("5.0.0") |
|
|
|
|
|
GROUP_TYPES = [ |
|
"symmetric", "alternating", "cyclic", "dihedral", |
|
"klein", "quaternion", "elementary_abelian", "psl", |
|
"frobenius", "mathieu" |
|
] |
|
|
|
BUILDER_CONFIGS = [] |
|
|
|
|
|
for group_type in GROUP_TYPES: |
|
BUILDER_CONFIGS.append( |
|
PermutationGroupsConfig( |
|
name=group_type, |
|
description=f"{group_type.capitalize()} permutation groups", |
|
group_type=group_type, |
|
) |
|
) |
|
|
|
|
|
BUILDER_CONFIGS.append( |
|
PermutationGroupsConfig( |
|
name="all", |
|
description="All permutation groups", |
|
group_type=None, |
|
) |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "symmetric" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"input_sequence": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
"group_type": datasets.Value("string"), |
|
"group_degree": datasets.Value("int32"), |
|
"group_order": datasets.Value("int32"), |
|
"sequence_length": datasets.Value("int32"), |
|
}), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
if self.config.group_type: |
|
|
|
datasets_to_load = [f"{self.config.group_type}_superset"] |
|
else: |
|
|
|
datasets_to_load = [ |
|
"symmetric_superset", "alternating_superset", |
|
"cyclic_superset", "dihedral_superset", |
|
"klein_superset", "quaternion_superset", |
|
"elementary_abelian_superset", "psl_superset", |
|
"frobenius_superset", "mathieu_superset" |
|
] |
|
|
|
|
|
train_urls = [] |
|
test_urls = [] |
|
|
|
for dataset_name in datasets_to_load: |
|
train_urls.append(f"data/{dataset_name}/train/data-*.arrow") |
|
test_urls.append(f"data/{dataset_name}/test/data-*.arrow") |
|
|
|
|
|
downloaded_files = dl_manager.download({ |
|
"train": train_urls, |
|
"test": test_urls |
|
}) |
|
|
|
|
|
train_files = [] |
|
test_files = [] |
|
|
|
for file_list in downloaded_files["train"]: |
|
if isinstance(file_list, list): |
|
train_files.extend(file_list) |
|
else: |
|
train_files.append(file_list) |
|
|
|
for file_list in downloaded_files["test"]: |
|
if isinstance(file_list, list): |
|
test_files.extend(file_list) |
|
else: |
|
test_files.append(file_list) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": train_files, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"files": test_files, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
"""Yield examples with filtering.""" |
|
idx = 0 |
|
|
|
for file_path in files: |
|
|
|
table = datasets.table.read_table(file_path) |
|
|
|
|
|
df = table.to_pandas() |
|
|
|
|
|
mask = pd.Series([True] * len(df)) |
|
|
|
|
|
if self.config.group_type: |
|
mask &= (df["group_type"] == self.config.group_type) |
|
|
|
|
|
if self.config.min_degree is not None: |
|
mask &= (df["group_degree"] >= self.config.min_degree) |
|
if self.config.max_degree is not None: |
|
mask &= (df["group_degree"] <= self.config.max_degree) |
|
|
|
|
|
if self.config.min_order is not None: |
|
mask &= (df["group_order"] >= self.config.min_order) |
|
if self.config.max_order is not None: |
|
mask &= (df["group_order"] <= self.config.max_order) |
|
|
|
|
|
if self.config.min_len is not None: |
|
mask &= (df["sequence_length"] >= self.config.min_len) |
|
if self.config.max_len is not None: |
|
mask &= (df["sequence_length"] <= self.config.max_len) |
|
|
|
|
|
filtered_df = df[mask] |
|
|
|
|
|
for _, row in filtered_df.iterrows(): |
|
yield idx, { |
|
"input_sequence": row["input_sequence"], |
|
"target": row["target"], |
|
"group_type": row["group_type"], |
|
"group_degree": int(row["group_degree"]), |
|
"group_order": int(row["group_order"]), |
|
"sequence_length": int(row["sequence_length"]), |
|
} |
|
idx += 1 |