id
stringlengths 14
15
| text
stringlengths 22
2.51k
| source
stringlengths 60
153
|
---|---|---|
a5f374ce3625-1
|
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param early_stopping_method: str = 'force'¶
The method to use for early stopping if the agent never
returns AgentFinish. Either ‘force’ or ‘generate’.
“force” returns a string saying that it stopped because it met atime or iteration limit.
“generate” calls the agent’s LLM Chain one final time to generatea final answer based on the previous steps.
param handle_parsing_errors: Union[bool, str, Callable[[OutputParserException], str]] = False¶
How to handle errors raised by the agent’s output parser.Defaults to False, which raises the error.
sIf true, the error will be sent back to the LLM as an observation.
If a string, the string itself will be sent to the LLM as an observation.
If a callable function, the function will be called with the exception
as an argument, and the result of that function will be passed to the agentas an observation.
param max_execution_time: Optional[float] = None¶
The maximum amount of wall clock time to spend in the execution
loop.
param max_iterations: Optional[int] = 15¶
The maximum number of steps to take before ending the execution
loop.
Setting to ‘None’ could lead to an infinite loop.
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
a5f374ce3625-2
|
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param return_intermediate_steps: bool = False¶
Whether to return the agent’s trajectory of intermediate steps
at the end in addition to the final output.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param tools: Sequence[BaseTool] [Required]¶
The valid tools the agent can call.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
a5f374ce3625-3
|
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
a5f374ce3625-4
|
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
a5f374ce3625-5
|
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
dict(**kwargs: Any) → Dict¶
Return dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
classmethod from_agent_and_tools(agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any) → AgentExecutor¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
a5f374ce3625-6
|
Create from agent and tools.
classmethod from_chains(llm: BaseLanguageModel, chains: List[ChainConfig], **kwargs: Any) → AgentExecutor[source]¶
User friendly way to initialize the MRKL chain.
This is intended to be an easy way to get up and running with the
MRKL chain.
Parameters
llm – The LLM to use as the agent LLM.
chains – The chains the MRKL system has access to.
**kwargs – parameters to be passed to initialization.
Returns
An initialized MRKL chain.
Example
from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm)
chains = [
ChainConfig(
action_name = "Search",
action=search.search,
action_description="useful for searching"
),
ChainConfig(
action_name="Calculator",
action=llm_math_chain.run,
action_description="useful for doing math"
)
]
mrkl = MRKLChain.from_chains(llm, chains)
lookup_tool(name: str) → BaseTool¶
Lookup tool by name.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
a5f374ce3625-7
|
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
a5f374ce3625-8
|
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Raise error - saving not supported for Agent Executors.
save_agent(file_path: Union[Path, str]) → None¶
Save the underlying agent.
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
validator validate_return_direct_tool » all fields¶
Validate that tools are compatible with agent.
validator validate_tools » all fields¶
Validate that tools are compatible with agent.
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
a5f374ce3625-9
|
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.MRKLChain.html
|
504377011276-0
|
langchain.agents.mrkl.base.ZeroShotAgent¶
class langchain.agents.mrkl.base.ZeroShotAgent(*, llm_chain: LLMChain, output_parser: AgentOutputParser = None, allowed_tools: Optional[List[str]] = None)[source]¶
Bases: Agent
Agent for the MRKL chain.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_tools: Optional[List[str]] = None¶
param llm_chain: langchain.chains.llm.LLMChain [Required]¶
param output_parser: langchain.agents.agent.AgentOutputParser [Optional]¶
async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.ZeroShotAgent.html
|
504377011276-1
|
**kwargs – User inputs.
Returns
Action specifying what tool to use.
classmethod create_prompt(tools: Sequence[BaseTool], prefix: str = 'Answer the following questions as best you can. You have access to the following tools:', suffix: str = 'Begin!\n\nQuestion: {input}\nThought:{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None) → PromptTemplate[source]¶
Create prompt in the style of the zero shot agent.
Parameters
tools – List of tools the agent will have access to, used to format the
prompt.
prefix – String to put before the list of tools.
suffix – String to put after the list of tools.
input_variables – List of input variables the final prompt will expect.
Returns
A PromptTemplate with the template assembled from the pieces here.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.ZeroShotAgent.html
|
504377011276-2
|
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = 'Answer the following questions as best you can. You have access to the following tools:', suffix: str = 'Begin!\n\nQuestion: {input}\nThought:{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, **kwargs: Any) → Agent[source]¶
Construct an agent from an LLM and tools.
get_allowed_tools() → Optional[List[str]]¶
get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → Dict[str, Any]¶
Create the full inputs for the LLMChain from intermediate steps.
plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.ZeroShotAgent.html
|
504377011276-3
|
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → AgentFinish¶
Return response when agent has been stopped due to max iterations.
save(file_path: Union[Path, str]) → None¶
Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict¶
validator validate_prompt » all fields¶
Validate that prompt matches format.
property llm_prefix: str¶
Prefix to append the llm call with.
property observation_prefix: str¶
Prefix to append the observation with.
property return_values: List[str]¶
Return values of the agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.base.ZeroShotAgent.html
|
272cdc382f34-0
|
langchain.agents.mrkl.output_parser.MRKLOutputParser¶
class langchain.agents.mrkl.output_parser.MRKLOutputParser[source]¶
Bases: AgentOutputParser
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
get_format_instructions() → str[source]¶
Instructions on how the LLM output should be formatted.
parse(text: str) → Union[AgentAction, AgentFinish][source]¶
Parse text into agent action/finish.
parse_result(result: List[Generation]) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of language model.
prompt – Input PromptValue.
Returns
Structured output
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.output_parser.MRKLOutputParser.html
|
272cdc382f34-1
|
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
extra = 'ignore'¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.mrkl.output_parser.MRKLOutputParser.html
|
4f22d95fe8fd-0
|
langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent¶
class langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent(*, llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: BasePromptTemplate)[source]¶
Bases: BaseSingleActionAgent
An Agent driven by OpenAIs function powered API.
Parameters
llm – This should be an instance of ChatOpenAI, specifically a model
that supports using functions.
tools – The tools this agent has access to.
prompt – The prompt for this agent, should support agent_scratchpad as one
of the variables. For an easy way to construct this prompt, use
OpenAIFunctionsAgent.create_prompt(…)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param llm: langchain.base_language.BaseLanguageModel [Required]¶
param prompt: langchain.schema.prompt_template.BasePromptTemplate [Required]¶
param tools: Sequence[langchain.tools.base.BaseTool] [Required]¶
async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish][source]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
**kwargs – User inputs.
Returns
Action specifying what tool to use.
classmethod create_prompt(system_message: Optional[SystemMessage] = SystemMessage(content='You are a helpful AI assistant.', additional_kwargs={}), extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None) → BasePromptTemplate[source]¶
Create prompt for this agent.
Parameters
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent.html
|
4f22d95fe8fd-1
|
Create prompt for this agent.
Parameters
system_message – Message to use as the system message that will be the
first in the prompt.
extra_prompt_messages – Prompt messages that will be placed between the
system message and the new human input.
Returns
A prompt template to pass into this agent.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, system_message: Optional[SystemMessage] = SystemMessage(content='You are a helpful AI assistant.', additional_kwargs={}), **kwargs: Any) → BaseSingleActionAgent[source]¶
Construct an agent from an LLM and tools.
get_allowed_tools() → List[str][source]¶
Get allowed tools.
plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish][source]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date, along with observations
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → AgentFinish¶
Return response when agent has been stopped due to max iterations.
save(file_path: Union[Path, str]) → None¶
Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent.html
|
4f22d95fe8fd-2
|
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict¶
validator validate_llm » all fields[source]¶
validator validate_prompt » all fields[source]¶
property functions: List[dict]¶
property input_keys: List[str]¶
Get input keys. Input refers to user input here.
property return_values: List[str]¶
Return values of the agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.openai_functions_agent.base.OpenAIFunctionsAgent.html
|
f99624dc204c-0
|
langchain.agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent¶
class langchain.agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent(*, llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: BasePromptTemplate)[source]¶
Bases: BaseMultiActionAgent
An Agent driven by OpenAIs function powered API.
Parameters
llm – This should be an instance of ChatOpenAI, specifically a model
that supports using functions.
tools – The tools this agent has access to.
prompt – The prompt for this agent, should support agent_scratchpad as one
of the variables. For an easy way to construct this prompt, use
OpenAIMultiFunctionsAgent.create_prompt(…)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param llm: langchain.base_language.BaseLanguageModel [Required]¶
param prompt: langchain.schema.prompt_template.BasePromptTemplate [Required]¶
param tools: Sequence[langchain.tools.base.BaseTool] [Required]¶
async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[List[AgentAction], AgentFinish][source]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
**kwargs – User inputs.
Returns
Action specifying what tool to use.
classmethod create_prompt(system_message: Optional[SystemMessage] = SystemMessage(content='You are a helpful AI assistant.', additional_kwargs={}), extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None) → BasePromptTemplate[source]¶
Create prompt for this agent.
Parameters
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent.html
|
f99624dc204c-1
|
Create prompt for this agent.
Parameters
system_message – Message to use as the system message that will be the
first in the prompt.
extra_prompt_messages – Prompt messages that will be placed between the
system message and the new human input.
Returns
A prompt template to pass into this agent.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, system_message: Optional[SystemMessage] = SystemMessage(content='You are a helpful AI assistant.', additional_kwargs={}), **kwargs: Any) → BaseMultiActionAgent[source]¶
Construct an agent from an LLM and tools.
get_allowed_tools() → List[str][source]¶
Get allowed tools.
plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[List[AgentAction], AgentFinish][source]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date, along with observations
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → AgentFinish¶
Return response when agent has been stopped due to max iterations.
save(file_path: Union[Path, str]) → None¶
Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent.html
|
f99624dc204c-2
|
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict¶
validator validate_llm » all fields[source]¶
validator validate_prompt » all fields[source]¶
property functions: List[dict]¶
property input_keys: List[str]¶
Get input keys. Input refers to user input here.
property return_values: List[str]¶
Return values of the agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent.html
|
2015fd35f51d-0
|
langchain.agents.react.base.ReActChain¶
class langchain.agents.react.base.ReActChain(llm: BaseLanguageModel, docstore: Docstore, *, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', handle_parsing_errors: Union[bool, str, Callable[[OutputParserException], str]] = False)[source]¶
Bases: AgentExecutor
Chain that implements the ReAct paper.
Example
from langchain import ReActChain, OpenAI
react = ReAct(llm=OpenAI())
Initialize with the LLM and a docstore.
param agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]¶
The agent to run for creating a plan and determining actions
to take at each step of the execution loop.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param early_stopping_method: str = 'force'¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
2015fd35f51d-1
|
for full details.
param early_stopping_method: str = 'force'¶
The method to use for early stopping if the agent never
returns AgentFinish. Either ‘force’ or ‘generate’.
“force” returns a string saying that it stopped because it met atime or iteration limit.
“generate” calls the agent’s LLM Chain one final time to generatea final answer based on the previous steps.
param handle_parsing_errors: Union[bool, str, Callable[[OutputParserException], str]] = False¶
How to handle errors raised by the agent’s output parser.Defaults to False, which raises the error.
sIf true, the error will be sent back to the LLM as an observation.
If a string, the string itself will be sent to the LLM as an observation.
If a callable function, the function will be called with the exception
as an argument, and the result of that function will be passed to the agentas an observation.
param max_execution_time: Optional[float] = None¶
The maximum amount of wall clock time to spend in the execution
loop.
param max_iterations: Optional[int] = 15¶
The maximum number of steps to take before ending the execution
loop.
Setting to ‘None’ could lead to an infinite loop.
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None
This metadata will be associated with each call to this chain,
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
2015fd35f51d-2
|
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param return_intermediate_steps: bool = False¶
Whether to return the agent’s trajectory of intermediate steps
at the end in addition to the final output.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param tools: Sequence[BaseTool] [Required]¶
The valid tools the agent can call.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
2015fd35f51d-3
|
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
2015fd35f51d-4
|
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
2015fd35f51d-5
|
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
dict(**kwargs: Any) → Dict¶
Return dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
classmethod from_agent_and_tools(agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any) → AgentExecutor¶
Create from agent and tools.
lookup_tool(name: str) → BaseTool¶
Lookup tool by name.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
2015fd35f51d-6
|
lookup_tool(name: str) → BaseTool¶
Lookup tool by name.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
2015fd35f51d-7
|
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Raise error - saving not supported for Agent Executors.
save_agent(file_path: Union[Path, str]) → None¶
Save the underlying agent.
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
2015fd35f51d-8
|
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
validator validate_return_direct_tool » all fields¶
Validate that tools are compatible with agent.
validator validate_tools » all fields¶
Validate that tools are compatible with agent.
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActChain.html
|
bdaeb88ea95b-0
|
langchain.agents.react.base.ReActDocstoreAgent¶
class langchain.agents.react.base.ReActDocstoreAgent(*, llm_chain: LLMChain, output_parser: AgentOutputParser = None, allowed_tools: Optional[List[str]] = None)[source]¶
Bases: Agent
Agent for the ReAct chain.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_tools: Optional[List[str]] = None¶
param llm_chain: LLMChain [Required]¶
param output_parser: langchain.agents.agent.AgentOutputParser [Optional]¶
async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
classmethod create_prompt(tools: Sequence[BaseTool]) → BasePromptTemplate[source]¶
Return default prompt.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any) → Agent¶
Construct an agent from an LLM and tools.
get_allowed_tools() → Optional[List[str]]¶
get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → Dict[str, Any]¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActDocstoreAgent.html
|
bdaeb88ea95b-1
|
Create the full inputs for the LLMChain from intermediate steps.
plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → AgentFinish¶
Return response when agent has been stopped due to max iterations.
save(file_path: Union[Path, str]) → None¶
Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict¶
validator validate_prompt » all fields¶
Validate that prompt matches format.
property llm_prefix: str¶
Prefix to append the LLM call with.
property observation_prefix: str¶
Prefix to append the observation with.
property return_values: List[str]¶
Return values of the agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActDocstoreAgent.html
|
5f418ece71b3-0
|
langchain.agents.react.base.ReActTextWorldAgent¶
class langchain.agents.react.base.ReActTextWorldAgent(*, llm_chain: LLMChain, output_parser: AgentOutputParser = None, allowed_tools: Optional[List[str]] = None)[source]¶
Bases: ReActDocstoreAgent
Agent for the ReAct TextWorld chain.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_tools: Optional[List[str]] = None¶
param llm_chain: LLMChain [Required]¶
param output_parser: langchain.agents.agent.AgentOutputParser [Optional]¶
async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
classmethod create_prompt(tools: Sequence[BaseTool]) → BasePromptTemplate[source]¶
Return default prompt.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any) → Agent¶
Construct an agent from an LLM and tools.
get_allowed_tools() → Optional[List[str]]¶
get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → Dict[str, Any]¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActTextWorldAgent.html
|
5f418ece71b3-1
|
Create the full inputs for the LLMChain from intermediate steps.
plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → AgentFinish¶
Return response when agent has been stopped due to max iterations.
save(file_path: Union[Path, str]) → None¶
Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict¶
validator validate_prompt » all fields¶
Validate that prompt matches format.
property llm_prefix: str¶
Prefix to append the LLM call with.
property observation_prefix: str¶
Prefix to append the observation with.
property return_values: List[str]¶
Return values of the agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.base.ReActTextWorldAgent.html
|
5d54632eefeb-0
|
langchain.agents.react.output_parser.ReActOutputParser¶
class langchain.agents.react.output_parser.ReActOutputParser[source]¶
Bases: AgentOutputParser
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
get_format_instructions() → str¶
Instructions on how the LLM output should be formatted.
parse(text: str) → Union[AgentAction, AgentFinish][source]¶
Parse text into agent action/finish.
parse_result(result: List[Generation]) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of language model.
prompt – Input PromptValue.
Returns
Structured output
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.output_parser.ReActOutputParser.html
|
5d54632eefeb-1
|
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
extra = 'ignore'¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.react.output_parser.ReActOutputParser.html
|
a64f7534527d-0
|
langchain.agents.schema.AgentScratchPadChatPromptTemplate¶
class langchain.agents.schema.AgentScratchPadChatPromptTemplate(*, input_variables: List[str], output_parser: Optional[BaseOutputParser] = None, partial_variables: Mapping[str, Union[str, Callable[[], str]]] = None, messages: List[Union[BaseMessagePromptTemplate, BaseMessage]])[source]¶
Bases: ChatPromptTemplate
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param input_variables: List[str] [Required]¶
A list of the names of the variables the prompt template expects.
param messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] [Required]¶
param output_parser: Optional[BaseOutputParser] = None¶
How to parse the output of calling an LLM on this formatted prompt.
param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]¶
dict(**kwargs: Any) → Dict¶
Return dictionary representation of prompt.
format(**kwargs: Any) → str¶
Format the prompt with the inputs.
Parameters
kwargs – Any arguments to be passed to the prompt template.
Returns
A formatted string.
Example:
prompt.format(variable1="foo")
format_messages(**kwargs: Any) → List[BaseMessage]¶
Format kwargs into a list of messages.
format_prompt(**kwargs: Any) → PromptValue¶
Create Chat Messages.
classmethod from_messages(messages: Sequence[Union[BaseMessagePromptTemplate, BaseMessage]]) → ChatPromptTemplate¶
classmethod from_role_strings(string_messages: List[Tuple[str, str]]) → ChatPromptTemplate¶
classmethod from_strings(string_messages: List[Tuple[Type[BaseMessagePromptTemplate], str]]) → ChatPromptTemplate¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.schema.AgentScratchPadChatPromptTemplate.html
|
a64f7534527d-1
|
classmethod from_template(template: str, **kwargs: Any) → ChatPromptTemplate¶
partial(**kwargs: Union[str, Callable[[], str]]) → BasePromptTemplate¶
Return a partial of the prompt template.
save(file_path: Union[Path, str]) → None¶
Save the prompt.
Parameters
file_path – Path to directory to save prompt to.
Example:
.. code-block:: python
prompt.save(file_path=”path/prompt.yaml”)
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
validator validate_input_variables » all fields¶
validator validate_variable_names » all fields¶
Validate variable names do not include restricted names.
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.schema.AgentScratchPadChatPromptTemplate.html
|
650f4be6d25e-0
|
langchain.agents.self_ask_with_search.base.SelfAskWithSearchAgent¶
class langchain.agents.self_ask_with_search.base.SelfAskWithSearchAgent(*, llm_chain: LLMChain, output_parser: AgentOutputParser = None, allowed_tools: Optional[List[str]] = None)[source]¶
Bases: Agent
Agent for the self-ask-with-search paper.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_tools: Optional[List[str]] = None¶
param llm_chain: LLMChain [Required]¶
param output_parser: langchain.agents.agent.AgentOutputParser [Optional]¶
async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
classmethod create_prompt(tools: Sequence[BaseTool]) → BasePromptTemplate[source]¶
Prompt does not depend on tools.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any) → Agent¶
Construct an agent from an LLM and tools.
get_allowed_tools() → Optional[List[str]]¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchAgent.html
|
650f4be6d25e-1
|
get_allowed_tools() → Optional[List[str]]¶
get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → Dict[str, Any]¶
Create the full inputs for the LLMChain from intermediate steps.
plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → AgentFinish¶
Return response when agent has been stopped due to max iterations.
save(file_path: Union[Path, str]) → None¶
Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict¶
validator validate_prompt » all fields¶
Validate that prompt matches format.
property llm_prefix: str¶
Prefix to append the LLM call with.
property observation_prefix: str¶
Prefix to append the observation with.
property return_values: List[str]¶
Return values of the agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchAgent.html
|
dfc753517c04-0
|
langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain¶
class langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain(llm: BaseLanguageModel, search_chain: Union[GoogleSerperAPIWrapper, SerpAPIWrapper], *, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', handle_parsing_errors: Union[bool, str, Callable[[OutputParserException], str]] = False)[source]¶
Bases: AgentExecutor
Chain that does self-ask with search.
Example
from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper
search_chain = GoogleSerperAPIWrapper()
self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain)
Initialize with just an LLM and a search chain.
param agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]¶
The agent to run for creating a plan and determining actions
to take at each step of the execution loop.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
dfc753517c04-1
|
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param early_stopping_method: str = 'force'¶
The method to use for early stopping if the agent never
returns AgentFinish. Either ‘force’ or ‘generate’.
“force” returns a string saying that it stopped because it met atime or iteration limit.
“generate” calls the agent’s LLM Chain one final time to generatea final answer based on the previous steps.
param handle_parsing_errors: Union[bool, str, Callable[[OutputParserException], str]] = False¶
How to handle errors raised by the agent’s output parser.Defaults to False, which raises the error.
sIf true, the error will be sent back to the LLM as an observation.
If a string, the string itself will be sent to the LLM as an observation.
If a callable function, the function will be called with the exception
as an argument, and the result of that function will be passed to the agentas an observation.
param max_execution_time: Optional[float] = None¶
The maximum amount of wall clock time to spend in the execution
loop.
param max_iterations: Optional[int] = 15¶
The maximum number of steps to take before ending the execution
loop.
Setting to ‘None’ could lead to an infinite loop.
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
dfc753517c04-2
|
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param return_intermediate_steps: bool = False¶
Whether to return the agent’s trajectory of intermediate steps
at the end in addition to the final output.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param tools: Sequence[BaseTool] [Required]¶
The valid tools the agent can call.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
dfc753517c04-3
|
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
dfc753517c04-4
|
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
dfc753517c04-5
|
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
dict(**kwargs: Any) → Dict¶
Return dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
classmethod from_agent_and_tools(agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any) → AgentExecutor¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
dfc753517c04-6
|
Create from agent and tools.
lookup_tool(name: str) → BaseTool¶
Lookup tool by name.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
dfc753517c04-7
|
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Raise error - saving not supported for Agent Executors.
save_agent(file_path: Union[Path, str]) → None¶
Save the underlying agent.
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
dfc753517c04-8
|
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
validator validate_return_direct_tool » all fields¶
Validate that tools are compatible with agent.
validator validate_tools » all fields¶
Validate that tools are compatible with agent.
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.base.SelfAskWithSearchChain.html
|
4e9043f40a9c-0
|
langchain.agents.self_ask_with_search.output_parser.SelfAskOutputParser¶
class langchain.agents.self_ask_with_search.output_parser.SelfAskOutputParser(*, followups: Sequence[str] = ('Follow up:', 'Followup:'), finish_string: str = 'So the final answer is: ')[source]¶
Bases: AgentOutputParser
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param finish_string: str = 'So the final answer is: '¶
param followups: Sequence[str] = ('Follow up:', 'Followup:')¶
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
get_format_instructions() → str¶
Instructions on how the LLM output should be formatted.
parse(text: str) → Union[AgentAction, AgentFinish][source]¶
Parse text into agent action/finish.
parse_result(result: List[Generation]) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of language model.
prompt – Input PromptValue.
Returns
Structured output
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.output_parser.SelfAskOutputParser.html
|
4e9043f40a9c-1
|
Returns
Structured output
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
extra = 'ignore'¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.self_ask_with_search.output_parser.SelfAskOutputParser.html
|
e8b40994026d-0
|
langchain.agents.structured_chat.base.StructuredChatAgent¶
class langchain.agents.structured_chat.base.StructuredChatAgent(*, llm_chain: LLMChain, output_parser: AgentOutputParser = None, allowed_tools: Optional[List[str]] = None)[source]¶
Bases: Agent
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_tools: Optional[List[str]] = None¶
param llm_chain: langchain.chains.llm.LLMChain [Required]¶
param output_parser: langchain.agents.agent.AgentOutputParser [Optional]¶
async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.structured_chat.base.StructuredChatAgent.html
|
e8b40994026d-1
|
**kwargs – User inputs.
Returns
Action specifying what tool to use.
classmethod create_prompt(tools: Sequence[BaseTool], prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', human_message_template: str = '{input}\n\n{agent_scratchpad}', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\n "action": $TOOL_NAME,\n "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}}}}\n```', input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None) → BasePromptTemplate[source]¶
Create a prompt for this class.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.structured_chat.base.StructuredChatAgent.html
|
e8b40994026d-2
|
dict(**kwargs: Any) → Dict¶
Return dictionary representation of agent.
classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', human_message_template: str = '{input}\n\n{agent_scratchpad}', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\n "action": $TOOL_NAME,\n "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}}}}\n```', input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, **kwargs: Any) → Agent[source]¶
Construct an agent from an LLM and tools.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.structured_chat.base.StructuredChatAgent.html
|
e8b40994026d-3
|
Construct an agent from an LLM and tools.
get_allowed_tools() → Optional[List[str]]¶
get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → Dict[str, Any]¶
Create the full inputs for the LLMChain from intermediate steps.
plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[AgentAction, AgentFinish]¶
Given input, decided what to do.
Parameters
intermediate_steps – Steps the LLM has taken to date,
along with observations
callbacks – Callbacks to run.
**kwargs – User inputs.
Returns
Action specifying what tool to use.
return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) → AgentFinish¶
Return response when agent has been stopped due to max iterations.
save(file_path: Union[Path, str]) → None¶
Save the agent.
Parameters
file_path – Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path=”path/agent.yaml”)
tool_run_logging_kwargs() → Dict¶
validator validate_prompt » all fields¶
Validate that prompt matches format.
property llm_prefix: str¶
Prefix to append the llm call with.
property observation_prefix: str¶
Prefix to append the observation with.
property return_values: List[str]¶
Return values of the agent.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.structured_chat.base.StructuredChatAgent.html
|
06dd1be5c685-0
|
langchain.agents.structured_chat.output_parser.StructuredChatOutputParser¶
class langchain.agents.structured_chat.output_parser.StructuredChatOutputParser[source]¶
Bases: AgentOutputParser
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
get_format_instructions() → str[source]¶
Instructions on how the LLM output should be formatted.
parse(text: str) → Union[AgentAction, AgentFinish][source]¶
Parse text into agent action/finish.
parse_result(result: List[Generation]) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of language model.
prompt – Input PromptValue.
Returns
Structured output
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.structured_chat.output_parser.StructuredChatOutputParser.html
|
06dd1be5c685-1
|
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
extra = 'ignore'¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.structured_chat.output_parser.StructuredChatOutputParser.html
|
9f23a0c04955-0
|
langchain.agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries¶
class langchain.agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries(*, base_parser: AgentOutputParser = None, output_fixing_parser: Optional[OutputFixingParser] = None)[source]¶
Bases: AgentOutputParser
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param base_parser: langchain.agents.agent.AgentOutputParser [Optional]¶
param output_fixing_parser: Optional[langchain.output_parsers.fix.OutputFixingParser] = None¶
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
classmethod from_llm(llm: Optional[BaseLanguageModel] = None, base_parser: Optional[StructuredChatOutputParser] = None) → StructuredChatOutputParserWithRetries[source]¶
get_format_instructions() → str[source]¶
Instructions on how the LLM output should be formatted.
parse(text: str) → Union[AgentAction, AgentFinish][source]¶
Parse text into agent action/finish.
parse_result(result: List[Generation]) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries.html
|
9f23a0c04955-1
|
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of language model.
prompt – Input PromptValue.
Returns
Structured output
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
extra = 'ignore'¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries.html
|
91acf2451474-0
|
langchain.agents.tools.InvalidTool¶
class langchain.agents.tools.InvalidTool(*, name: str = 'invalid_tool', description: str = 'Called when tool name is invalid.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False)[source]¶
Bases: BaseTool
Tool that is run when invalid tool name is encountered by agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Called when tool name is invalid.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.tools.InvalidTool.html
|
91acf2451474-1
|
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'invalid_tool'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.tools.InvalidTool.html
|
91acf2451474-2
|
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.tools.InvalidTool.html
|
7efd59cd2dad-0
|
langchain.agents.utils.validate_tools_single_input¶
langchain.agents.utils.validate_tools_single_input(class_name: str, tools: Sequence[BaseTool]) → None[source]¶
Validate tools for single input.
|
rtdocs\api.python.langchain.com\en\latest\agents\langchain.agents.utils.validate_tools_single_input.html
|
f6963ee3f9e4-0
|
langchain.base_language.BaseLanguageModel¶
class langchain.base_language.BaseLanguageModel[source]¶
Bases: Serializable, ABC
Base class for all language models.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
abstract async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult[source]¶
Take in a list of prompt values and return an LLMResult.
classmethod all_required_field_names() → Set[source]¶
abstract async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶
Predict text from text.
abstract async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶
Predict message from messages.
abstract generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult[source]¶
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int[source]¶
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int[source]¶
Get the number of tokens in the message.
get_token_ids(text: str) → List[int][source]¶
Get the token present in the text.
abstract predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶
Predict text from text.
|
rtdocs\api.python.langchain.com\en\latest\base_language\langchain.base_language.BaseLanguageModel.html
|
f6963ee3f9e4-1
|
Predict text from text.
abstract predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶
Predict message from messages.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
extra = 'ignore'¶
|
rtdocs\api.python.langchain.com\en\latest\base_language\langchain.base_language.BaseLanguageModel.html
|
6641fc268f69-0
|
langchain.cache.BaseCache¶
class langchain.cache.BaseCache[source]¶
Bases: ABC
Base interface for cache.
Methods
__init__()
clear(**kwargs)
Clear cache that can take additional keyword arguments.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
abstract clear(**kwargs: Any) → None[source]¶
Clear cache that can take additional keyword arguments.
abstract lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
abstract update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string.
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.BaseCache.html
|
4c6c5451a380-0
|
langchain.cache.FullLLMCache¶
class langchain.cache.FullLLMCache(**kwargs)[source]¶
Bases: Base
SQLite table for full LLM Cache (all generations).
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and
values in kwargs.
Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.
Methods
__init__(**kwargs)
A simple constructor that allows initialization from kwargs.
Attributes
idx
llm
metadata
prompt
registry
response
idx¶
llm¶
metadata: MetaData = MetaData()¶
prompt¶
registry: RegistryType = <sqlalchemy.orm.decl_api.registry object>¶
response¶
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.FullLLMCache.html
|
a5e78d5237d6-0
|
langchain.cache.GPTCache¶
class langchain.cache.GPTCache(init_func: Optional[Union[Callable[[Any, str], None], Callable[[Any], None]]] = None)[source]¶
Bases: BaseCache
Cache that uses GPTCache as a backend.
Initialize by passing in init function (default: None).
Parameters
init_func (Optional[Callable[[Any], None]]) – init GPTCache function
(default – None)
Example:
.. code-block:: python
# Initialize GPTCache with a custom init function
import gptcache
from gptcache.processor.pre import get_prompt
from gptcache.manager.factory import get_data_manager
# Avoid multiple caches using the same file,
causing different llm model caches to affect each other
def init_gptcache(cache_obj: gptcache.Cache, llm str):
cache_obj.init(pre_embedding_func=get_prompt,
data_manager=manager_factory(
manager=”map”,
data_dir=f”map_cache_{llm}”
),
)
langchain.llm_cache = GPTCache(init_gptcache)
Methods
__init__([init_func])
Initialize by passing in init function (default: None).
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up the cache data.
update(prompt, llm_string, return_val)
Update cache.
clear(**kwargs: Any) → None[source]¶
Clear cache.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up the cache data.
First, retrieve the corresponding cache object using the llm_string parameter,
and then retrieve the data from the cache based on the prompt.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.GPTCache.html
|
a5e78d5237d6-1
|
Update cache.
First, retrieve the corresponding cache object using the llm_string parameter,
and then store the prompt and return_val in the cache object.
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.GPTCache.html
|
38ee213b7f09-0
|
langchain.cache.InMemoryCache¶
class langchain.cache.InMemoryCache[source]¶
Bases: BaseCache
Cache that stores things in memory.
Initialize with empty cache.
Methods
__init__()
Initialize with empty cache.
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
clear(**kwargs: Any) → None[source]¶
Clear cache.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string.
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.InMemoryCache.html
|
6cf0ed3dea34-0
|
langchain.cache.MomentoCache¶
class langchain.cache.MomentoCache(cache_client: momento.CacheClient, cache_name: str, *, ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True)[source]¶
Bases: BaseCache
Cache that uses Momento as a backend. See https://gomomento.com/
Instantiate a prompt cache using Momento as a backend.
Note: to instantiate the cache client passed to MomentoCache,
you must have a Momento account. See https://gomomento.com/.
Parameters
cache_client (CacheClient) – The Momento cache client.
cache_name (str) – The name of the cache to use to store the data.
ttl (Optional[timedelta], optional) – The time to live for the cache items.
Defaults to None, ie use the client default TTL.
ensure_cache_exists (bool, optional) – Create the cache if it doesn’t
exist. Defaults to True.
Raises
ImportError – Momento python package is not installed.
TypeError – cache_client is not of type momento.CacheClientObject
ValueError – ttl is non-null and non-negative
Methods
__init__(cache_client, cache_name, *[, ttl, ...])
Instantiate a prompt cache using Momento as a backend.
clear(**kwargs)
Clear the cache.
from_client_params(cache_name, ttl, *[, ...])
Construct cache from CacheClient parameters.
lookup(prompt, llm_string)
Lookup llm generations in cache by prompt and associated model and settings.
update(prompt, llm_string, return_val)
Store llm generations in cache.
clear(**kwargs: Any) → None[source]¶
Clear the cache.
Raises
SdkException – Momento service or network error
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.MomentoCache.html
|
6cf0ed3dea34-1
|
Clear the cache.
Raises
SdkException – Momento service or network error
classmethod from_client_params(cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, auth_token: Optional[str] = None, **kwargs: Any) → MomentoCache[source]¶
Construct cache from CacheClient parameters.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Lookup llm generations in cache by prompt and associated model and settings.
Parameters
prompt (str) – The prompt run through the language model.
llm_string (str) – The language model version and settings.
Raises
SdkException – Momento service or network error
Returns
A list of language model generations.
Return type
Optional[RETURN_VAL_TYPE]
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Store llm generations in cache.
Parameters
prompt (str) – The prompt run through the language model.
llm_string (str) – The language model string.
return_val (RETURN_VAL_TYPE) – A list of language model generations.
Raises
SdkException – Momento service or network error
Exception – Unexpected response
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.MomentoCache.html
|
13804a391524-0
|
langchain.cache.RedisCache¶
class langchain.cache.RedisCache(redis_: Any)[source]¶
Bases: BaseCache
Cache that uses Redis as a backend.
Initialize by passing in Redis instance.
Methods
__init__(redis_)
Initialize by passing in Redis instance.
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
clear(**kwargs: Any) → None[source]¶
Clear cache. If asynchronous is True, flush asynchronously.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string.
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.RedisCache.html
|
7cda7c234a0f-0
|
langchain.cache.RedisSemanticCache¶
class langchain.cache.RedisSemanticCache(redis_url: str, embedding: Embeddings, score_threshold: float = 0.2)[source]¶
Bases: BaseCache
Cache that uses Redis as a vector-store backend.
Initialize by passing in the init GPTCache func
Parameters
redis_url (str) – URL to connect to Redis.
embedding (Embedding) – Embedding provider for semantic encoding and search.
score_threshold (float, 0.2) –
Example:
import langchain
from langchain.cache import RedisSemanticCache
from langchain.embeddings import OpenAIEmbeddings
langchain.llm_cache = RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=OpenAIEmbeddings()
)
Methods
__init__(redis_url, embedding[, score_threshold])
Initialize by passing in the init GPTCache func
clear(**kwargs)
Clear semantic cache for a given llm_string.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
clear(**kwargs: Any) → None[source]¶
Clear semantic cache for a given llm_string.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string.
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.RedisSemanticCache.html
|
00eeffae606a-0
|
langchain.cache.SQLAlchemyCache¶
class langchain.cache.SQLAlchemyCache(engine: ~sqlalchemy.engine.base.Engine, cache_schema: ~typing.Type[~langchain.cache.FullLLMCache] = <class 'langchain.cache.FullLLMCache'>)[source]¶
Bases: BaseCache
Cache that uses SQAlchemy as a backend.
Initialize by creating all tables.
Methods
__init__(engine[, cache_schema])
Initialize by creating all tables.
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update based on prompt and llm_string.
clear(**kwargs: Any) → None[source]¶
Clear cache.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update based on prompt and llm_string.
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.SQLAlchemyCache.html
|
ffc43c922893-0
|
langchain.cache.SQLiteCache¶
class langchain.cache.SQLiteCache(database_path: str = '.langchain.db')[source]¶
Bases: SQLAlchemyCache
Cache that uses SQLite as a backend.
Initialize by creating the engine and all tables.
Methods
__init__([database_path])
Initialize by creating the engine and all tables.
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update based on prompt and llm_string.
clear(**kwargs: Any) → None¶
Clear cache.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None¶
Update based on prompt and llm_string.
|
rtdocs\api.python.langchain.com\en\latest\cache\langchain.cache.SQLiteCache.html
|
fa84845a3b1f-0
|
langchain.callbacks.aim_callback.AimCallbackHandler¶
class langchain.callbacks.aim_callback.AimCallbackHandler(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True)[source]¶
Bases: BaseMetadataCallbackHandler, BaseCallbackHandler
Callback Handler that logs to Aim.
Parameters
repo (str, optional) – Aim repository path or Repo object to which
Run object is bound. If skipped, default Repo is used.
experiment_name (str, optional) – Sets Run’s experiment property.
‘default’ if not specified. Can be used later to query runs/sequences.
system_tracking_interval (int, optional) – Sets the tracking interval
in seconds for system usage metrics (CPU, Memory, etc.). Set to None
to disable system metrics tracking.
log_system_params (bool, optional) – Enable/Disable logging of system
params such as installed packages, git info, environment variables, etc.
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run
and then logs the response to Aim.
Initialize callback handler.
Methods
__init__([repo, experiment_name, ...])
Initialize callback handler.
flush_tracker([repo, experiment_name, ...])
Flush the tracker and reset the session.
get_custom_callback_meta()
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run when agent ends running.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.aim_callback.AimCallbackHandler.html
|
fa84845a3b1f-1
|
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run when LLM generates a new token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, **kwargs)
Run when agent is ending.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
reset_callback_meta()
Reset the callback metadata.
setup(**kwargs)
Attributes
always_verbose
Whether to call verbose callbacks even if verbose is False.
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.aim_callback.AimCallbackHandler.html
|
fa84845a3b1f-2
|
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
flush_tracker(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True, langchain_asset: Any = None, reset: bool = True, finish: bool = False) → None[source]¶
Flush the tracker and reset the session.
Parameters
repo (str, optional) – Aim repository path or Repo object to which
Run object is bound. If skipped, default Repo is used.
experiment_name (str, optional) – Sets Run’s experiment property.
‘default’ if not specified. Can be used later to query runs/sequences.
system_tracking_interval (int, optional) – Sets the tracking interval
in seconds for system usage metrics (CPU, Memory, etc.). Set to None
to disable system metrics tracking.
log_system_params (bool, optional) – Enable/Disable logging of system
params such as installed packages, git info, environment variables, etc.
langchain_asset – The langchain asset to save.
reset – Whether to reset the session.
finish – Whether to finish the run.
Returns – None
get_custom_callback_meta() → Dict[str, Any]¶
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run when agent ends running.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when chain errors.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.aim_callback.AimCallbackHandler.html
|
fa84845a3b1f-3
|
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.aim_callback.AimCallbackHandler.html
|
fa84845a3b1f-4
|
Run when Retriever starts running.
on_text(text: str, **kwargs: Any) → None[source]¶
Run when agent is ending.
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
reset_callback_meta() → None¶
Reset the callback metadata.
setup(**kwargs: Any) → None[source]¶
property always_verbose: bool¶
Whether to call verbose callbacks even if verbose is False.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.aim_callback.AimCallbackHandler.html
|
2b1755b7a707-0
|
langchain.callbacks.aim_callback.import_aim¶
langchain.callbacks.aim_callback.import_aim() → Any[source]¶
Import the aim python package and raise an error if it is not installed.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.aim_callback.import_aim.html
|
ef45d81ff78c-0
|
langchain.callbacks.argilla_callback.ArgillaCallbackHandler¶
class langchain.callbacks.argilla_callback.ArgillaCallbackHandler(dataset_name: str, workspace_name: Optional[str] = None, api_url: Optional[str] = None, api_key: Optional[str] = None)[source]¶
Bases: BaseCallbackHandler
Callback Handler that logs into Argilla.
Parameters
dataset_name – name of the FeedbackDataset in Argilla. Note that it must
exist in advance. If you need help on how to create a FeedbackDataset in
Argilla, please visit
https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html.
workspace_name – name of the workspace in Argilla where the specified
FeedbackDataset lives in. Defaults to None, which means that the
default workspace will be used.
api_url – URL of the Argilla Server that we want to use, and where the
FeedbackDataset lives in. Defaults to None, which means that either
ARGILLA_API_URL environment variable or the default http://localhost:6900
will be used.
api_key – API Key to connect to the Argilla Server. Defaults to None, which
means that either ARGILLA_API_KEY environment variable or the default
argilla.apikey will be used.
Raises
ImportError – if the argilla package is not installed.
ConnectionError – if the connection to Argilla fails.
FileNotFoundError – if the FeedbackDataset retrieval from Argilla fails.
Examples
>>> from langchain.llms import OpenAI
>>> from langchain.callbacks import ArgillaCallbackHandler
>>> argilla_callback = ArgillaCallbackHandler(
... dataset_name="my-dataset",
... workspace_name="my-workspace",
... api_url="http://localhost:6900",
... api_key="argilla.apikey",
... )
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.argilla_callback.ArgillaCallbackHandler.html
|
ef45d81ff78c-1
|
... api_key="argilla.apikey",
... )
>>> llm = OpenAI(
... temperature=0,
... callbacks=[argilla_callback],
... verbose=True,
... openai_api_key="API_KEY_HERE",
... )
>>> llm.generate([
... "What is the best NLP-annotation tool out there? (no bias at all)",
... ])
"Argilla, no doubt about it."
Initializes the ArgillaCallbackHandler.
Parameters
dataset_name – name of the FeedbackDataset in Argilla. Note that it must
exist in advance. If you need help on how to create a FeedbackDataset
in Argilla, please visit
https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html.
workspace_name – name of the workspace in Argilla where the specified
FeedbackDataset lives in. Defaults to None, which means that the
default workspace will be used.
api_url – URL of the Argilla Server that we want to use, and where the
FeedbackDataset lives in. Defaults to None, which means that either
ARGILLA_API_URL environment variable or the default
http://localhost:6900 will be used.
api_key – API Key to connect to the Argilla Server. Defaults to None, which
means that either ARGILLA_API_KEY environment variable or the default
argilla.apikey will be used.
Raises
ImportError – if the argilla package is not installed.
ConnectionError – if the connection to Argilla fails.
FileNotFoundError – if the FeedbackDataset retrieval from Argilla fails.
Methods
__init__(dataset_name[, workspace_name, ...])
Initializes the ArgillaCallbackHandler.
on_agent_action(action, **kwargs)
Do nothing when agent takes a specific action.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.argilla_callback.ArgillaCallbackHandler.html
|
ef45d81ff78c-2
|
on_agent_action(action, **kwargs)
Do nothing when agent takes a specific action.
on_agent_finish(finish, **kwargs)
Do nothing
on_chain_end(outputs, **kwargs)
If either the parent_run_id or the run_id is in self.prompts, then log the outputs to Argilla, and pop the run from self.prompts.
on_chain_error(error, **kwargs)
Do nothing when LLM chain outputs an error.
on_chain_start(serialized, inputs, **kwargs)
If the key input is in inputs, then save it in self.prompts using either the parent_run_id or the run_id as the key.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Log records to Argilla when an LLM ends.
on_llm_error(error, **kwargs)
Do nothing when LLM outputs an error.
on_llm_new_token(token, **kwargs)
Do nothing when a new token is generated.
on_llm_start(serialized, prompts, **kwargs)
Save the prompts in memory when an LLM starts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, **kwargs)
Do nothing
on_tool_end(output[, observation_prefix, ...])
Do nothing when tool ends.
on_tool_error(error, **kwargs)
Do nothing when tool outputs an error.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.argilla_callback.ArgillaCallbackHandler.html
|
ef45d81ff78c-3
|
on_tool_error(error, **kwargs)
Do nothing when tool outputs an error.
on_tool_start(serialized, input_str, **kwargs)
Do nothing when tool starts.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Do nothing when agent takes a specific action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Do nothing
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
If either the parent_run_id or the run_id is in self.prompts, then
log the outputs to Argilla, and pop the run from self.prompts. The behavior
differs if the output is a list or not.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing when LLM chain outputs an error.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
If the key input is in inputs, then save it in self.prompts using
either the parent_run_id or the run_id as the key. This is done so that
we don’t log the same input prompt twice, once when the LLM starts and once
when the chain starts.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.argilla_callback.ArgillaCallbackHandler.html
|
ef45d81ff78c-4
|
when the chain starts.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Log records to Argilla when an LLM ends.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing when LLM outputs an error.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Do nothing when a new token is generated.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Save the prompts in memory when an LLM starts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.argilla_callback.ArgillaCallbackHandler.html
|
ef45d81ff78c-5
|
Run when Retriever starts running.
on_text(text: str, **kwargs: Any) → None[source]¶
Do nothing
on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
Do nothing when tool ends.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing when tool outputs an error.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Do nothing when tool starts.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.argilla_callback.ArgillaCallbackHandler.html
|
3f190938e071-0
|
langchain.callbacks.arize_callback.ArizeCallbackHandler¶
class langchain.callbacks.arize_callback.ArizeCallbackHandler(model_id: Optional[str] = None, model_version: Optional[str] = None, SPACE_KEY: Optional[str] = None, API_KEY: Optional[str] = None)[source]¶
Bases: BaseCallbackHandler
Callback Handler that logs to Arize.
Initialize callback handler.
Methods
__init__([model_id, model_version, ...])
Initialize callback handler.
on_agent_action(action, **kwargs)
Do nothing.
on_agent_finish(finish, **kwargs)
Run on agent end.
on_chain_end(outputs, **kwargs)
Do nothing.
on_chain_error(error, **kwargs)
Do nothing.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Do nothing.
on_llm_new_token(token, **kwargs)
Do nothing.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, **kwargs)
Run on arbitrary text.
on_tool_end(output[, observation_prefix, ...])
Run when tool ends running.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.arize_callback.ArizeCallbackHandler.html
|
3f190938e071-1
|
on_tool_end(output[, observation_prefix, ...])
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Do nothing.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Do nothing.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.arize_callback.ArizeCallbackHandler.html
|
3f190938e071-2
|
Do nothing.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Do nothing.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_text(text: str, **kwargs: Any) → None[source]¶
Run on arbitrary text.
on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.arize_callback.ArizeCallbackHandler.html
|
3f190938e071-3
|
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.arize_callback.ArizeCallbackHandler.html
|
9ec2a64c0a23-0
|
langchain.callbacks.arthur_callback.ArthurCallbackHandler¶
class langchain.callbacks.arthur_callback.ArthurCallbackHandler(arthur_model: ArthurModel)[source]¶
Bases: BaseCallbackHandler
Callback Handler that logs to Arthur platform.
Arthur helps enterprise teams optimize model operations
and performance at scale. The Arthur API tracks model
performance, explainability, and fairness across tabular,
NLP, and CV models. Our API is model- and platform-agnostic,
and continuously scales with complex and dynamic enterprise needs.
To learn more about Arthur, visit our website at
https://www.arthur.ai/ or read the Arthur docs at
https://docs.arthur.ai/
Initialize callback handler.
Methods
__init__(arthur_model)
Initialize callback handler.
from_credentials(model_id[, arthur_url, ...])
Initialize callback handler from Arthur credentials.
on_agent_action(action, **kwargs)
Do nothing when agent takes a specific action.
on_agent_finish(finish, **kwargs)
Do nothing
on_chain_end(outputs, **kwargs)
On chain end, do nothing.
on_chain_error(error, **kwargs)
Do nothing when LLM chain outputs an error.
on_chain_start(serialized, inputs, **kwargs)
On chain start, do nothing.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
On LLM end, send data to Arthur.
on_llm_error(error, **kwargs)
Do nothing when LLM outputs an error.
on_llm_new_token(token, **kwargs)
On new token, pass.
on_llm_start(serialized, prompts, **kwargs)
On LLM start, save the input prompts
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.arthur_callback.ArthurCallbackHandler.html
|
9ec2a64c0a23-1
|
On LLM start, save the input prompts
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, **kwargs)
Do nothing
on_tool_end(output[, observation_prefix, ...])
Do nothing when tool ends.
on_tool_error(error, **kwargs)
Do nothing when tool outputs an error.
on_tool_start(serialized, input_str, **kwargs)
Do nothing when tool starts.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
classmethod from_credentials(model_id: str, arthur_url: Optional[str] = 'https://app.arthur.ai', arthur_login: Optional[str] = None, arthur_password: Optional[str] = None) → ArthurCallbackHandler[source]¶
Initialize callback handler from Arthur credentials.
Parameters
model_id (str) – The ID of the arthur model to log to.
arthur_url (str, optional) – The URL of the Arthur instance to log to.
Defaults to “https://app.arthur.ai”.
arthur_login (str, optional) – The login to use to connect to Arthur.
Defaults to None.
arthur_password (str, optional) – The password to use to connect to
Arthur. Defaults to None.
Returns
The initialized callback handler.
Return type
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.arthur_callback.ArthurCallbackHandler.html
|
9ec2a64c0a23-2
|
Arthur. Defaults to None.
Returns
The initialized callback handler.
Return type
ArthurCallbackHandler
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Do nothing when agent takes a specific action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Do nothing
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
On chain end, do nothing.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing when LLM chain outputs an error.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
On chain start, do nothing.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
On LLM end, send data to Arthur.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing when LLM outputs an error.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
On new token, pass.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
On LLM start, save the input prompts
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.arthur_callback.ArthurCallbackHandler.html
|
9ec2a64c0a23-3
|
On LLM start, save the input prompts
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_text(text: str, **kwargs: Any) → None[source]¶
Do nothing
on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
Do nothing when tool ends.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing when tool outputs an error.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Do nothing when tool starts.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.arthur_callback.ArthurCallbackHandler.html
|
befef67605b3-0
|
langchain.callbacks.base.AsyncCallbackHandler¶
class langchain.callbacks.base.AsyncCallbackHandler[source]¶
Bases: BaseCallbackHandler
Async callback handler that can be used to handle callbacks from langchain.
Methods
__init__()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, ...])
Run when chain ends running.
on_chain_error(error, *, run_id[, ...])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, ...])
Run when LLM ends running.
on_llm_error(error, *, run_id[, ...])
Run when LLM errors.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run on retriever end.
on_retriever_error(error, *, run_id[, ...])
Run on retriever error.
on_retriever_start(serialized, query, *, run_id)
Run on retriever start.
on_text(text, *, run_id[, parent_run_id, tags])
Run on arbitrary text.
on_tool_end(output, *, run_id[, ...])
Run when tool ends running.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.base.AsyncCallbackHandler.html
|
befef67605b3-1
|
Run when tool ends running.
on_tool_error(error, *, run_id[, ...])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on agent action.
async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on agent end.
async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when chain ends running.
async on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when chain errors.
async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.base.AsyncCallbackHandler.html
|
befef67605b3-2
|
Run when chain starts running.
async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run when a chat model starts running.
async on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when LLM ends running.
async on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when LLM errors.
async on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled.
async on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when LLM starts running.
async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on retriever end.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.base.AsyncCallbackHandler.html
|
befef67605b3-3
|
Run on retriever end.
async on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on retriever error.
async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run on retriever start.
async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on arbitrary text.
async on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when tool ends running.
async on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when tool errors.
async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when tool starts running.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
|
rtdocs\api.python.langchain.com\en\latest\callbacks\langchain.callbacks.base.AsyncCallbackHandler.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.