ToxiMol-benchmark / README.md
feilin-must's picture
Update README.md
c562bdd verified
---
license: mit
task_categories:
- tabular-classification
- tabular-regression
task_ids:
- multi-class-classification
- tabular-single-column-regression
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
language:
- en
tags:
- chemistry
- toxicity
- molecular-design
- SMILES
- drug-discovery
- benchmark
- multimodal
- structure-activity-relationship
pretty_name: "ToxiMol: A Benchmark for Structure-Level Molecular Detoxification"
dataset_info:
features:
- name: task
dtype: string
- name: id
dtype: int64
- name: smiles
dtype: string
- name: image_path
dtype: string
splits:
- name: test
num_examples: 560
configs:
- config_name: ames
data_files: "ames/*"
- config_name: carcinogens_lagunin
data_files: "carcinogens_lagunin/*"
- config_name: clintox
data_files: "clintox/*"
- config_name: dili
data_files: "dili/*"
- config_name: herg
data_files: "herg/*"
- config_name: herg_central
data_files: "herg_central/*"
- config_name: herg_karim
data_files: "herg_karim/*"
- config_name: ld50_zhu
data_files: "ld50_zhu/*"
- config_name: skin_reaction
data_files: "skin_reaction/*"
- config_name: tox21
data_files: "tox21/*"
- config_name: toxcast
data_files: "toxcast/*"
---
# ToxiMol: A Benchmark for Structure-Level Molecular Detoxification
[![arXiv](https://img.shields.io/badge/arXiv-paper-red.svg)](https://arxiv.org/pdf/2506.10912)
[![Dataset](https://img.shields.io/badge/🤗%20Hugging%20Face-ToxiMol-blue)](https://huggingface.co/datasets/DeepYoke/ToxiMol-benchmark)
## Overview
**ToxiMol** is the first comprehensive benchmark for **molecular toxicity repair** tailored to general-purpose **Multimodal Large Language Models (MLLMs)**. This is the dataset repository for the paper "Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?".
## Key Features
### 🧬 Comprehensive Dataset
- **560 representative toxic molecules** spanning diverse toxicity mechanisms and varying granularities
- **11 primary toxicity repair tasks** based on [Therapeutics Data Commons (TDC) platform](https://tdcommons.ai/single_pred_tasks/tox/)
- **Multi-granular coverage**: Tox21 (12 sub-tasks), ToxCast (10 sub-tasks), and 9 additional datasets
- **Multimodal inputs**: SMILES strings + 2D molecular structure images rendered using RDKit
### 🎯 Challenging Task Definition
The molecular toxicity repair task requires models to:
1. **Identify potential toxicity endpoints** from molecular structures
2. **Interpret semantic constraints** from natural language descriptions
3. **Generate structurally similar substitute molecules** that eliminate toxic fragments
4. **Satisfy drug-likeness and synthetic feasibility** requirements
### 📊 Systematic Evaluation
- **ToxiEval framework**: Automated evaluation integrating toxicity prediction, synthetic accessibility, drug-likeness, and structural similarity
- **Comprehensive analysis**: Evaluation of ~30 mainstream MLLMs with ablation studies
- **Multi-dimensional metrics**: Success rate analysis across different evaluation criteria and failure modes
## Dataset Structure
### Task Overview
| Dataset | Task Type | # Molecules | Description |
|---------|-----------|-------------|-------------|
| **AMES** | Binary Classification | 50 | Mutagenicity testing |
| **Carcinogens** | Binary Classification | 50 | Carcinogenicity prediction |
| **ClinTox** | Binary Classification | 50 | Clinical toxicity data |
| **DILI** | Binary Classification | 50 | Drug-induced liver injury |
| **hERG** | Binary Classification | 50 | hERG channel inhibition |
| **hERG_Central** | Binary Classification | 50 | Large-scale hERG database with integrated cardiac safety profiles |
| **hERG_Karim** | Binary Classification | 50 | hERG data from Karim et al. |
| **LD50_Zhu** | Regression (log(LD50) < 2) | 50 | Acute toxicity |
| **Skin_Reaction** | Binary Classification | 50 | Adverse skin reactions |
| **Tox21** | Binary Classification (12 sub-tasks) | 60 | Nuclear receptors, stress response pathways, and cellular toxicity mechanisms (ARE, p53, ER, AR, etc.) |
| **ToxCast** | Binary Classification (10 sub-tasks) | 50 | Diverse toxicity pathways including mitochondrial dysfunction, immunosuppression, and neurotoxicity |
### Data Structure
Each entry contains:
```json
{
"task": "string", // Toxicity task identifier
"id": "int", // Molecule ID
"smiles": "string", // SMILES representation
"image": "binary" // 2D molecular structure image binary
}
```
<!-- ## Usage -->
<!--
### Loading the Dataset
```python
from datasets import load_dataset
# Load a specific subdataset
ames_dataset = load_dataset("DeepYoke/ToxiMol-benchmark", "ames")
tox21_dataset = load_dataset("DeepYoke/ToxiMol-benchmark", "tox21")
# Access the data
for example in ames_dataset['test']:
print(f"Task: {example['task']}")
print(f"ID: {example['id']}")
print(f"SMILES: {example['smiles']}")
print(f"Image: {example['image_path']}")
print("-" * 50)
``` -->
## Available Subdatasets
```python
subdatasets = [
"ames", "carcinogens_lagunin", "clintox", "dili",
"herg", "herg_central", "herg_karim", "ld50_zhu",
"skin_reaction", "tox21", "toxcast"
]
# Load all datasets
datasets = {}
for name in subdatasets:
datasets[name] = load_dataset("DeepYoke/ToxiMol-benchmark", data_dir=name)
```
## Experimental Results
Our systematic evaluation of ~30 mainstream MLLMs reveals:
- **Current limitations**: Overall success rates remain relatively low across models
- **Emerging capabilities**: Models demonstrate initial potential in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing
- **Key challenges**: Structural validity, multi-dimensional constraint satisfaction, and failure mode attribution
## Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{lin2025breakingbadmoleculesmllms,
title={Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?},
author={Fei Lin and Ziyang Gong and Cong Wang and Yonglin Tian and Tengchao Zhang and Xue Yang and Gen Luo and Fei-Yue Wang},
year={2025},
eprint={2506.10912},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2506.10912},
}
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.