|
--- |
|
license: mit |
|
task_categories: |
|
- tabular-classification |
|
- tabular-regression |
|
task_ids: |
|
- multi-class-classification |
|
- tabular-single-column-regression |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 1K<n<10K |
|
source_datasets: |
|
- original |
|
language: |
|
- en |
|
tags: |
|
- chemistry |
|
- toxicity |
|
- molecular-design |
|
- SMILES |
|
- drug-discovery |
|
- benchmark |
|
- multimodal |
|
- structure-activity-relationship |
|
pretty_name: "ToxiMol: A Benchmark for Structure-Level Molecular Detoxification" |
|
dataset_info: |
|
features: |
|
- name: task |
|
dtype: string |
|
- name: id |
|
dtype: int64 |
|
- name: smiles |
|
dtype: string |
|
- name: image_path |
|
dtype: string |
|
splits: |
|
- name: test |
|
num_examples: 560 |
|
configs: |
|
- config_name: ames |
|
data_files: "ames/*" |
|
- config_name: carcinogens_lagunin |
|
data_files: "carcinogens_lagunin/*" |
|
- config_name: clintox |
|
data_files: "clintox/*" |
|
- config_name: dili |
|
data_files: "dili/*" |
|
- config_name: herg |
|
data_files: "herg/*" |
|
- config_name: herg_central |
|
data_files: "herg_central/*" |
|
- config_name: herg_karim |
|
data_files: "herg_karim/*" |
|
- config_name: ld50_zhu |
|
data_files: "ld50_zhu/*" |
|
- config_name: skin_reaction |
|
data_files: "skin_reaction/*" |
|
- config_name: tox21 |
|
data_files: "tox21/*" |
|
- config_name: toxcast |
|
data_files: "toxcast/*" |
|
--- |
|
|
|
# ToxiMol: A Benchmark for Structure-Level Molecular Detoxification |
|
|
|
[](https://arxiv.org/pdf/2506.10912) |
|
[](https://huggingface.co/datasets/DeepYoke/ToxiMol-benchmark) |
|
|
|
## Overview |
|
|
|
**ToxiMol** is the first comprehensive benchmark for **molecular toxicity repair** tailored to general-purpose **Multimodal Large Language Models (MLLMs)**. This is the dataset repository for the paper "Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?". |
|
|
|
## Key Features |
|
|
|
### 🧬 Comprehensive Dataset |
|
- **560 representative toxic molecules** spanning diverse toxicity mechanisms and varying granularities |
|
- **11 primary toxicity repair tasks** based on [Therapeutics Data Commons (TDC) platform](https://tdcommons.ai/single_pred_tasks/tox/) |
|
- **Multi-granular coverage**: Tox21 (12 sub-tasks), ToxCast (10 sub-tasks), and 9 additional datasets |
|
- **Multimodal inputs**: SMILES strings + 2D molecular structure images rendered using RDKit |
|
|
|
### 🎯 Challenging Task Definition |
|
The molecular toxicity repair task requires models to: |
|
1. **Identify potential toxicity endpoints** from molecular structures |
|
2. **Interpret semantic constraints** from natural language descriptions |
|
3. **Generate structurally similar substitute molecules** that eliminate toxic fragments |
|
4. **Satisfy drug-likeness and synthetic feasibility** requirements |
|
|
|
### 📊 Systematic Evaluation |
|
- **ToxiEval framework**: Automated evaluation integrating toxicity prediction, synthetic accessibility, drug-likeness, and structural similarity |
|
- **Comprehensive analysis**: Evaluation of ~30 mainstream MLLMs with ablation studies |
|
- **Multi-dimensional metrics**: Success rate analysis across different evaluation criteria and failure modes |
|
|
|
## Dataset Structure |
|
|
|
### Task Overview |
|
| Dataset | Task Type | # Molecules | Description | |
|
|---------|-----------|-------------|-------------| |
|
| **AMES** | Binary Classification | 50 | Mutagenicity testing | |
|
| **Carcinogens** | Binary Classification | 50 | Carcinogenicity prediction | |
|
| **ClinTox** | Binary Classification | 50 | Clinical toxicity data | |
|
| **DILI** | Binary Classification | 50 | Drug-induced liver injury | |
|
| **hERG** | Binary Classification | 50 | hERG channel inhibition | |
|
| **hERG_Central** | Binary Classification | 50 | Large-scale hERG database with integrated cardiac safety profiles | |
|
| **hERG_Karim** | Binary Classification | 50 | hERG data from Karim et al. | |
|
| **LD50_Zhu** | Regression (log(LD50) < 2) | 50 | Acute toxicity | |
|
| **Skin_Reaction** | Binary Classification | 50 | Adverse skin reactions | |
|
| **Tox21** | Binary Classification (12 sub-tasks) | 60 | Nuclear receptors, stress response pathways, and cellular toxicity mechanisms (ARE, p53, ER, AR, etc.) | |
|
| **ToxCast** | Binary Classification (10 sub-tasks) | 50 | Diverse toxicity pathways including mitochondrial dysfunction, immunosuppression, and neurotoxicity | |
|
|
|
### Data Structure |
|
Each entry contains: |
|
```json |
|
{ |
|
"task": "string", // Toxicity task identifier |
|
"id": "int", // Molecule ID |
|
"smiles": "string", // SMILES representation |
|
"image": "binary" // 2D molecular structure image binary |
|
} |
|
``` |
|
|
|
<!-- ## Usage --> |
|
<!-- |
|
### Loading the Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load a specific subdataset |
|
ames_dataset = load_dataset("DeepYoke/ToxiMol-benchmark", "ames") |
|
tox21_dataset = load_dataset("DeepYoke/ToxiMol-benchmark", "tox21") |
|
|
|
# Access the data |
|
for example in ames_dataset['test']: |
|
print(f"Task: {example['task']}") |
|
print(f"ID: {example['id']}") |
|
print(f"SMILES: {example['smiles']}") |
|
print(f"Image: {example['image_path']}") |
|
print("-" * 50) |
|
``` --> |
|
|
|
## Available Subdatasets |
|
```python |
|
subdatasets = [ |
|
"ames", "carcinogens_lagunin", "clintox", "dili", |
|
"herg", "herg_central", "herg_karim", "ld50_zhu", |
|
"skin_reaction", "tox21", "toxcast" |
|
] |
|
|
|
# Load all datasets |
|
datasets = {} |
|
for name in subdatasets: |
|
datasets[name] = load_dataset("DeepYoke/ToxiMol-benchmark", data_dir=name) |
|
``` |
|
|
|
## Experimental Results |
|
|
|
Our systematic evaluation of ~30 mainstream MLLMs reveals: |
|
- **Current limitations**: Overall success rates remain relatively low across models |
|
- **Emerging capabilities**: Models demonstrate initial potential in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing |
|
- **Key challenges**: Structural validity, multi-dimensional constraint satisfaction, and failure mode attribution |
|
|
|
## Citation |
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
```bibtex |
|
@misc{lin2025breakingbadmoleculesmllms, |
|
title={Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?}, |
|
author={Fei Lin and Ziyang Gong and Cong Wang and Yonglin Tian and Tengchao Zhang and Xue Yang and Gen Luo and Fei-Yue Wang}, |
|
year={2025}, |
|
eprint={2506.10912}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI}, |
|
url={https://arxiv.org/abs/2506.10912}, |
|
} |
|
``` |
|
|
|
## License |
|
|
|
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. |